Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Overview

Motion prediction with Hierarchical Motion Recurrent Network

Introduction

This work concerns motion prediction of articulate objects such as human, fish and mice. Given a sequence of historical skeletal joints locations, we model the dynamics of the trajectory as kinematic chains of SE(3) group actions, parametrized by se(3) Lie algebra parameters. A sequence to sequence model employing our novel Hierarchical Motion Recurrent (HMR) Network as the decoder is employed to learn the temporal context of input pose sequences so as to predict future motion.

Instead of adopting the conventional Euclidean L2 loss function for the 3D coordinates, we propose a geodesic regression loss layer on the SE(3) manifold which provides the following advantages.

  • The SE(3) representation respects the anatomical and kinematic constraints of the skeletal model, i.e. bone lengths and physical degrees of freedom at the joints.
  • Spatial relations underlying the joints are fully captured.
  • Subtleties of temporal dynamics are better modelled in the manifold space than Euclidean space due to the absence of redundancy and constraints in the Lie algebra parameterization.

Train and Predict

The main file is found in motion_prediction.py.
To train and predict on default setting, execute the following with python 3.

python motion_prediction.py
FLAGS Default value Possible values Remarks
dataset --dataset Human Human, Fish, Mouse
datatype --datatype lie lie, xyz
action --action all all, actions listed below
training --training=1 0, 1
visualize --visualize=1 0, 1
longterm --longterm=0 0, 1 Super long-term prediction exceeding 60s.
dataset: Human
action: walking, eating or smoking.

To train and predict for different settings, simply set different value for the flags. An example of long term prediction for walking on the Human dataset is given below.

python motion_prediction.py --action walking --longterm=1

Possible actions for Human 3.6m

["directions", "discussion", "eating", "greeting", "phoning",
 "posing", "purchases", "sitting", "sittingdown", "smoking",
 "takingphoto", "waiting", "walking", "walkingdog", "walkingtogether"]

The configuration file is found in training_config.py. There are choices of different LSTM architectures as well as different loss functions that can be chosen in the configuration.

Checkpoint and Output

checkpoints are saved in:

./checkpoint/dataset[Human, Fish, Mouse]/datatype[lie, xyz]_model(_recurrent-steps_context-window_hidden-size)_loss/action/inputWindow_outputWindow

outputs are saved in:

./output/dataset[Human, Fish, Mouse]/datatype[lie, xyz]_model_(_recurrent-steps_context-window_hidden-size)_loss/action/inputWindow_outputWindow

*[ ] denotes possible arguments and ( ) is specific for our HMR model

Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022