This repository allows you to anonymize sensitive information in images/videos. The solution is fully compatible with the DL-based training/inference solutions that we already published/will publish for Object Detection and Semantic Segmentation.

Overview

BMW-Anonymization-Api

Data privacy and individuals’ anonymity are and always have been a major concern for data-driven companies.

Therefore, we designed and implemented an anonymization API that localizes and obfuscates (i.e. hides) sensitive information in images/videos in order to preserve the individuals' anonymity. The main features of our anonymization tool are the following:

  • Agnostic in terms of localization techniques: our API currently supports Semantic segmentation or Object Detection.
  • Modular in terms of sensitive information: the user can train a Deep Learning (DL) model for object detection and semantic segmentation (the training gui will be published soon) to localize the sensitive information she/he wishes to protect, e.g., individual's face or body, personal belongings, vehicles...
  • Scalable in terms of anonymization techniques: our API currently supports pixelating, blurring, blackening (masking). Also, additinal anonymization techniques can be configured as stated below. For the highest level of privacy, we recommend using the blackening technique with degree 1.
  • Supports DL-based models optimized via the Intel® OpenVINO™ toolkit v2021.1 for CPU usage: DL-based models optimized and deployed via the Openvino Segmentation Inference API and the Openvino Detection Inference API can also be used.
  • Compatible with the BMW Deep Learning tools: DL models trained via our training and deployed via our inference APIs are compatible with this anonymization API.

animated

General Architecture & Deployment Mode:

Our anonymization API receives an image along with a JSON object through which the user specifies mainly:

  • The sensitive information she/he wishes to obfuscate.
  • The anonymization technique.
  • The anonymization degree.
  • The localization technique.

You can deploy the anonymization API either:

  • As a standalone docker container which can be connected to other inference APIs (object detection or semantic segmentation) deployed within a standalone docker container as well.
  • As a network of docker containers along with other inference APIs running on the same machine via docker-compose. (please check the following link for the docker-compose deployment).

Prerequisites:

  • docker
  • docker-compose

Check for prerequisites

To check if docker-ce is installed:

docker --version

To check if docker-compose is installed:

docker-compose --version

Install prerequisites

Ubuntu

To install Docker and Docker Compose on Ubuntu, please follow the link.

Windows 10

To install Docker on Windows, please follow the link.

P.S: For Windows users, open the Docker Desktop menu by clicking the Docker Icon in the Notifications area. Select Settings, and then Advanced tab to adjust the resources available to Docker Engine.

Build The Docker Image

As mentioned before, this container can be deployed using either docker or docker-compose.

  • If you wish to deploy this API using docker-compose, please refer to following link. After deploying the API with docker compose, please consider returning to this documentation for further information about the API Endpoints and use configuration file sample sections.

  • If you wish to deploy this API using docker, please continue with the following docker build and run commands.

In order to build the project run the following command from the project's root directory:

 docker build -t anonymization_api -f docker/dockerfile .

Build behind a proxy

In order to build the image behind a proxy use the following command in the project's root directory:

docker build --build-arg http_proxy='your_proxy' --build-arg https_proxy='your_proxy' -t anonymization_api -f ./docker/dockerfile .

In case of build failure, the docker image python:3.6 should be updated to a newer version:

docker pull python:3.6

Run the docker container

To run the API, go to the API's directory and run the following:

Using Linux based docker:

sudo docker run -itv $(pwd)/src/main:/main -v $(pwd)/jsonFiles:/jsonFiles -p <port_of_your_choice>:4343 anonymization_api
Behind a proxy:
sudo docker run -itv $(pwd)/src/main:/main -v $(pwd)/jsonFiles:/jsonFiles  --env HTTP_PROXY="" --env HTTPS_PROXY="" --env http_proxy="" --env https_proxy="" -p 5555:4343 anonymization_api

Using Windows based docker:

docker run -itv ${PWD}/src/main:/main -v ${PWD}/jsonFiles:/jsonFiles -p <port_of_your_choice>:4343 anonymization_api

The API file will be run automatically, and the service will listen to http requests on the chosen port.

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_IP>:<docker_host_port>/docs

Endpoints summary

Configuration

/set_url (POST)

Set the URL of the inference API that you wish to connect to the Anonymization API. If the specified URL is unreachable due to connection problems, it will not be added to the JSON url_configuration file. The URL should be specified in the following format "http://ip:port/".

/list_urls (GET)

Returns the URLs of the inference APIs that were already configured via the /set_url POST request.

/remove_url (POST)

Removes the specified URL from the JSON url_configuration file

/remove_all_urls (POST)

Removes all available urls from the JSON url_configuration file

/available_methods/ (GET)

After setting the inference URLs via the /set_url request, the user can view the Anonymization API's configuration by issuing the /available_methods request. Mainly the user can view (i) the supported sensitive information (label_names) , (ii) the supported localization techniques, (iii) the inference URLs and (iv) the DL model name that are configured in the deployed anonymization API as seen below.

Anonymization

/anonymize/ (POST)

Anonymizes the input image based on the user's JSON configuration file

/anonymize_video/ (POST)

Anonymizes a video based on the user's sensitive info and save the anonymized video in src/main/anonymized_videos under <original_video_name>_TIMESTAMP.mp4

Video Anonymization Time

The video might take a while, actually you can estimate the time that it may take by using the following formula: Video_Anonymization_Time = Video_Length x Number_Of_Frames_Per_Second x Anonymization_Time_Of_Each_Frame

User configuration file sample

In order to anonymize an image, the user should specify the different details in the user's JSON configuration file

Please check a sample in the below image:

Note that the URL field is an optional field that you can add in case you wanted to use a specific URL of a running API. You can just add the URL as an optional field in this file as shown in the first sensitive info. In case this field is not specified, the URL defined in the url_configuration.json file will be used by default if it matches all the requirements.

To add a new technique to the API:

Please refer to the following link add new technique documentation for more information on how to add a new anonymization technique to the APIs with common and custom labels.

Benchmark

Object Detection

GPU Network Width Height Inference time Anonymization time Total
Titan RTX yolov4 640 768 0.2 s 0.07 s 0.27 s
Titan RTX yolov4 1024 768 0.4 s 0.14 s 0.54 s
Titan RTX yolov4 2048 1024 1.2 s 0.6 s 1.8 s
Titan RTX yolov4 3840 2160 4.8 s 0.6 s 5.4 s

Semantic Segmentation

GPU Network Width Height Inference time Anonymization time Total
Titan RTX psp resnet 101 640 768 0.2 s 0.8 s 1 s
Titan RTX psp resnet 101 1024 768 0.3 s 0.8 s 1.1 s
Titan RTX psp resnet 101 2048 1024 0.9 s 1 s 1.9 s
Titan RTX psp resnet 101 3840 2160 2 s 3 s 5 s

Possible Error

  • You may encounter the below error when running the docker container at startup in standalone version or docker-compose version url_error

  • In case you do, please make sure that the URL of the inference APIs listed in the jsonFiles/url_configuration.json are still recheable. A possible solution would be to empty jsonFiles/url_configuration.json as seen below before starting the container:

    {
    "urls": [
    ]
    }
    

Acknowledgments

Ghenwa Aoun, BMW Innovation Lab, Munich, Germany

Antoine Charbel, inmind.ai, Beirut, Lebanon

Roy Anwar, BMW Innovation Lab, Munich, Germany

Fady Dib, BMW Innovation Lab, Munich, Germany

Jimmy Tekli, BMW Innovation Lab, Munich, Germany

Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
Veri Setinizi Yolov5 Formatına Dönüştürün

Veri Setinizi Yolov5 Formatına Dönüştürün! Bu Repo da Neler Var? Xml Formatındaki Veri Setini .Txt Formatına Çevirme Xml Formatındaki Dosyaları Silme

Kadir Nar 4 Aug 22, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022