This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

Overview

BMW-IntelOpenVINO-Segmentation-Inference-API

This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported on both Windows and Linux Operating systems.

Models in Intermediate Representation(IR) format, converted via the Intel® OpenVINO™ toolkit v2021.1, can be deployed in this API. Currently, OpenVINO supports conversion for DL-based models trained via several Machine Learning frameworks including Caffe, Tensorflow etc. Please refer to the OpenVINO documentation for further details on converting your Model.

Note: To be able to use the sample inference model provided with this repository make sure to use git clone and avoid downloading the repository as ZIP because it will not download the acutual model stored on git lfs but just the pointer instead

overview

Prerequisites

  • OS:
    • Ubuntu 18.04
    • Windows 10 pro/enterprise
  • Docker

Check for prerequisites

To check if you have docker-ce installed:

docker --version

Install prerequisites

Ubuntu

Use the following command to install docker on Ubuntu:

chmod +x install_prerequisites.sh && source install_prerequisites.sh

Windows 10

To install Docker on Windows, please follow the link.

Build The Docker Image

In order to build the project run the following command from the project's root directory:

docker build -t openvino_segmentation -f docker/Dockerfile .

Behind a proxy

docker build --build-arg http_proxy='' --build-arg https_proxy='' -t openvino_segmentation -f docker/Dockerfile .

Run The Docker Container

If you wish to deploy this API using docker, please issue the following run command.

To run the API, go the to the API's directory and run the following:

Using Linux based docker:

docker run -itv $(pwd)/models:/models -v $(pwd)/models_hash:/models_hash -p <port_of_your_choice>:80 openvino_segmentation

Using Windows based docker:

Using PowerShell:
docker run -itv ${PWD}/models:/models -v ${PWD}/models_hash:/models_hash -p <port_of_your_choice>:80 openvino_segmentation
Using CMD:
docker run -itv %cd%/models:/models -v %cd%/models_hash:/models_hash -p <port_of_your_choice>:80 openvino_segmentation

The <docker_host_port> can be any unique port of your choice.

The API file will run automatically, and the service will listen to http requests on the chosen port. result

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_IP>:<docker_host_port>/docs

Endpoints summary

/load (GET)

Loads all available models and returns every model with it's hashed value. Loaded models are stored and aren't loaded again.

load model

/models/{model_name}/detect (POST)

Performs inference on an image using the specified model and returns the bounding-boxes of the class in a JSON format.

detect image

/models/{model_name}/image_segmentation (POST)

Performs inference on an image using the specified model, draws segmentation and the class on the image, and returns the resulting image as response.

image segmentation

Model structure

The folder "models" contains subfolders of all the models to be loaded. Inside each subfolder there should be a:

  • bin file (<your_converted_model>.bin): contains the model weights

  • xml file (<your_converted_model>.xml): describes the network topology

  • configuration.json (This is a json file containing information about the model)

      {
        "classes":4,
        "type":"segmentation",
        "classesname":[
          "background",
          "person",
          "bicycle",
          "car"
        ]
      }

How to add new model

Add New Model and create the palette

create a new folder and add the model files ('.bin' and '.xml' and the 'configuration.json') after adding this folder run the following script

python generate_random_palette.py -m <ModelName>

this script will generate a random palette and add it to your files

The "models" folder structure should now be similar to as shown below:

│──models
  │──model_1
  │  │──<model_1>.bin
  │  │──<model_1>.xml
  │  │──configuration.json
  |  |__palette.txt
  │
  │──model_2
  │  │──<model_2>.bin
  │  │──<model_2>.xml
  │  │──configuration.json
  │  │──palette.txt

image segmentation

Acknowledgements

OpenVINO Toolkit

intel.com

Elio Hanna

Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022