PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

Related tags

Deep LearningMAE-priv
Overview

MAE for Self-supervised ViT

Introduction

This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

This repo is mainly based on moco-v3, pytorch-image-models and BEiT

TODO

  • visualization of reconstruction image
  • linear prob
  • more results
  • transfer learning
  • ...

Main Results

The following results are based on ImageNet-1k self-supervised pre-training, followed by ImageNet-1k supervised training for linear evaluation or end-to-end fine-tuning.

Vit-Base

pretrain
epochs
with
pixel-norm
linear
acc
fine-tuning
acc
100 False -- 75.58 [1]
100 True -- 77.19
800 True -- --

On 8 NVIDIA GeForce RTX 3090 GPUs, pretrain for 100 epochs needs about 9 hours, 4096 batch size needs about 24 GB GPU memory.

[1]. fine-tuning for 50 epochs;

Vit-Large

pretrain
epochs
with
pixel-norm
linear
acc
fine-tuning
acc
100 False -- --
100 True -- --

On 8 NVIDIA A40 GPUs, pretrain for 100 epochs needs about 34 hours, 4096 batch size needs about xx GB GPU memory.

Usage: Preparation

The code has been tested with CUDA 11.4, PyTorch 1.8.2.

Notes:

  1. The batch size specified by -b is the total batch size across all GPUs from all nodes.
  2. The learning rate specified by --lr is the base lr (corresponding to 256 batch-size), and is adjusted by the linear lr scaling rule.
  3. In this repo, only multi-gpu, DistributedDataParallel training is supported; single-gpu or DataParallel training is not supported. This code is improved to better suit the multi-node setting, and by default uses automatic mixed-precision for pre-training.
  4. Only pretraining and finetuning have been tested.

Usage: Self-supervised Pre-Training

Below is examples for MAE pre-training.

ViT-Base with 1-node (8-GPU, NVIDIA GeForce RTX 3090) training, batch 4096

python main_mae.py \
  -c cfgs/ViT-B16_ImageNet1K_pretrain.yaml \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

or

sh train_mae.sh

ViT-Large with 1-node (8-GPU, NVIDIA A40) pre-training, batch 2048

python main_mae.py \
  -c cfgs/ViT-L16_ImageNet1K_pretrain.yaml \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

Usage: End-to-End Fine-tuning ViT

Below is examples for MAE fine-tuning.

ViT-Base with 1-node (8-GPU, NVIDIA GeForce RTX 3090) training, batch 1024

python main_fintune.py \
  -c cfgs/ViT-B16_ImageNet1K_finetune.yaml \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

ViT-Large with 2-node (16-GPU, 8 NVIDIA GeForce RTX 3090 + 8 NVIDIA A40) training, batch 512

python main_fintune.py \
  -c cfgs/ViT-B16_ImageNet1K_finetune.yaml \
  --multiprocessing-distributed --world-size 2 --rank 0 \
  [your imagenet-folder with train and val folders]

On another node, run the same command with --rank 1.

Note:

  1. We use --resume rather than --finetune in the DeiT repo, as its --finetune option trains under eval mode. When loading the pre-trained model, revise model_without_ddp.load_state_dict(checkpoint['model']) with strict=False.

[TODO] Usage: Linear Classification

By default, we use momentum-SGD and a batch size of 1024 for linear classification on frozen features/weights. This can be done with a single 8-GPU node.

python main_lincls.py \
  -a [architecture] --lr [learning rate] \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --pretrained [your checkpoint path]/[your checkpoint file].pth.tar \
  [your imagenet-folder with train and val folders]

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Citation

If you use the code of this repo, please cite the original papre and this repo:

@Article{he2021mae,
  author  = {Kaiming He* and Xinlei Chen* and Saining Xie and Yanghao Li and Piotr Dolla ́r and Ross Girshick},
  title   = {Masked Autoencoders Are Scalable Vision Learners},
  journal = {arXiv preprint arXiv:2111.06377},
  year    = {2021},
}
@misc{yang2021maepriv,
  author       = {Lu Yang* and Pu Cao* and Yang Nie and Qing Song},
  title        = {MAE-priv},
  howpublished = {\url{https://github.com/BUPT-PRIV/MAE-priv}},
  year         = {2021},
}
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022