Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database

Overview

Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database, using a set of "harvesters", whose job it is to monitor the datafiles produced by the battery testers and upload it in a standard format to the server database. The server database is a relational database that stores each dataset along with information about column types, units, and other relevant metadata (e.g. cell information, owner, purpose of the experiment)

There are two user interfaces to the system:

  • a web app front-end that can be used to view the stored datasets, manage the harvesters, and input metadata for each dataset
  • a REST API which can be used to download dataset metadata and the data itself. This API conforms to the battery-api OpenAPI specification, so tools based on this specification (e.g. the Python client) can use the API.

A diagram of the logical structure of the system is shown below. The arrows indicate the direction of data flow. The logical relationship of the various Galvanalyser components

Project documentation

The documentation directory contains more detailed documentation on a number of topics. It contains the following items:

  • FirstTimeQuickSetup.md - A quick start guide to setting up your first complete Galvanalyser system
  • AdministrationGuide.md - A guide to performing administration tasks such as creating users and setting up harvesters
  • DevelopmentGuide.md - A guide for developers on Galvanalyser
  • ProjectStructure.md - An overview of the project folder structure to guide developers to the locations of the various parts of the project

Technology used

This section provides a brief overview of the technology used to implement the different parts of the project.

Docker

Dockerfiles are provided to run all components of this project in containers. A docker-compose file exists to simplify starting the complete server side system including the database, the web app and the Nginx server. All components of the project can be run natively, however using Docker simplifies this greatly.

A Docker container is also used for building the web app and its dependencies to simplify cross platform deployment and ensure a consistent and reliable build process.

Backend server

The server is a Flask web application, which uses SQLAlchemy and psycopg2 to interface with the Postgres database.

Harvesters

The harvesters are python modules in the backend server which monitor directories for tester datafiles, parse them according to the their format and write the data and any metadata into the Postgres database. The running of the harvesters, either periodically or manually by a user, is done using a Celery distributed task queue.

Frontend web application

The frontend is written using Javascript, the React framework and using Material-UI components.

Database

The project uses PostgreSQL for its database. Other databases are currently not supported. An entity relationship diagram is shown below. Galvanalyser entity relationship diagram

Owner
Battery Intelligence Lab
Battery Intelligence Lab
Gathering data of likes on Tinder within the past 7 days

tinder_likes_data Gathering data of Likes Sent on Tinder within the past 7 days. Versions November 25th, 2021 - Functionality to get the name and age

Alex Carter 12 Jan 05, 2023
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

Himanshu Kumar singh 2 Dec 04, 2021
LynxKite: a complete graph data science platform for very large graphs and other datasets.

LynxKite is a complete graph data science platform for very large graphs and other datasets. It seamlessly combines the benefits of a friendly graphical interface and a powerful Python API.

124 Dec 14, 2022
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 03, 2023
Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance companies

Insurance-Fraud-Claims Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance com

1 Jan 27, 2022
A set of tools to analyse the output from TraDIS analyses

QuaTradis (Quadram TraDis) A set of tools to analyse the output from TraDIS analyses Contents Introduction Installation Required dependencies Bioconda

Quadram Institute Bioscience 2 Feb 16, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
CleanX is an open source python library for exploring, cleaning and augmenting large datasets of X-rays, or certain other types of radiological images.

cleanX CleanX is an open source python library for exploring, cleaning and augmenting large datasets of X-rays, or certain other types of radiological

Candace Makeda Moore, MD 20 Jan 05, 2023
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities. This is aimed at those looking to get into the field of D

Joachim 1 Dec 26, 2021
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which he recommends to buy. We will use this data to build a portfolio

Backtesting the "Cramer Effect" & Recommendations from Cramer Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which

Gábor Vecsei 12 Aug 30, 2022
Python library for creating data pipelines with chain functional programming

PyFunctional Features PyFunctional makes creating data pipelines easy by using chained functional operators. Here are a few examples of what it can do

Pedro Rodriguez 2.1k Jan 05, 2023
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
sportsdataverse python package

sportsdataverse-py See CHANGELOG.md for details. The goal of sportsdataverse-py is to provide the community with a python package for working with spo

Saiem Gilani 37 Dec 27, 2022
follow-analyzer helps GitHub users analyze their following and followers relationship

follow-analyzer follow-analyzer helps GitHub users analyze their following and followers relationship by providing a report in html format which conta

Yin-Chiuan Chen 2 May 02, 2022
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022