Face recognition. Redefined.

Overview

Contributors Forks Stargazers Issues MIT License LinkedIn


Logo

FaceFinder

Use a powerful CNN to identify faces in images!

TABLE OF CONTENTS
  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License
  7. Contact
  8. Acknowledgements

About The Project

screenshot

There is lots of face recognition software out there on github, but most of it focuses on speed over accuracy and uses models such as 'hog'. However, FaceFinder is one of the most powerful face recognition programs which uses a very large CNN to make accurate predictions.

Here's why:

  • Several modern technologies make use of face recognition and its importance in the world is constantly increasing.
  • You shouldn't have to train a full neural net of your own every time you want to perform face recognition.
  • FaceFinder contains code which runs approximately 3.7 times faster than average.

If you're making an app of your own and want it to perform face recognition, this is your go-to option.

A list of commonly used resources that I find helpful are listed in the acknowledgements.

Built With

Getting Started

To get a local copy up and running follow these simple steps.

Prerequisites

  • Latest versions of pip and setuptools
    pip install --upgrade pip setuptools
  • Conda
    pip install conda
  • Dlib
    python -m conda install dlib
  • Required packages
    pip install -r requirements.txt

Installation

  1. Ensure you're in your home directory:

    cd ~

    When you clone the repository it should show up as a subfolder in your home folder. You can change its location whenever you want.

  2. Clone the repo:

    git clone https://github.com/BleepLogger/FaceFinder

    Clone the repository by its URL.

  3. Navigate to cloned repository:

    cd FaceFinder

    Commands that you run should be run within the cloned repository.

  4. To run the program, execute tasks.py with command line arguments:

    python Scripts/tasks.py --data-dir '<data folder path>' --input_image '<path to image>'

    Replace the and with the real paths. They're just placeholders.

Usage

To run it from the command line, you will need to pass two arguments.

python Scripts/tasks.py --data-dir '<data folder path>' --input_image '<path to image>'

Replace the and with the real paths.

This program needs one directory containing different images labelled with whose face is present in the image. And then, you need an input image which will be classified.

So if you want to check whether an image is an image of your mom or your dad, then this is how you could do it:

  1. Create a directory called dataset/ in the FaceFinder directory in ~.
  2. Create two subdirectories, dataset/mom and dataset/dad.
  3. Add images of your mother to the mom subdir and your father to your dad subdir.
  4. Click an image of either your mom or your dad, the one you want to classify. Title it 2bclassified.jpg and put it in the FaceFinder directory.
  5. Run this command:
    python Scripts/tasks.py --data-dir 'dataset/' --input_image '2bclassified.jpg'

Then, after about 20 minutes of processing (6-7 if you have a GPU), a window will open up displaying your image, with a box highlighting the detected face and a box of text saying either "Mom" or saying "Dad".

You will have to install dlib from source if you want your GPU to be utilized. Look up the instructions to do that.

Roadmap

See the open issues for a list of proposed features (and known issues).

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Kanav Bhasin - @kanav_bhasin - [email protected]

Project Link: https://github.com/BleepLogger/FaceFinder


# Thank you!
Owner
BleepLogger
App/system developer specializing in C, Python, and JavaScript. Writes unreadable but very fast code. Skills include AI/ML, Web Scraping, and The Cloud.
BleepLogger
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022