PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

Overview

SLAPS-GNN

This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks.

Datasets

ogbn-arxiv dataset will be loaded automatically, while Cora, Citeseer, and Pubmed are included in the GCN package, available here. Place the relevant files in the folder data_tf.

Dependencies

To train the models, you need a machine with a GPU.

To install the dependencies, it is recommended to use a virtual environment. You can create a virtual environment and install all the dependencies with the following command:

conda env create -f environment.yml

The file requirements.txt was written for CUDA 9.2 and Linux so you may need to adapt it to your infrastructure.

Usage

To run the model you should define the following parameters:

  • dataset: The dataset you want to run the model on
  • ntrials: number of runs
  • epochs_adj: number of epochs
  • epochs: number of epochs for GNN_C (used for knn_gcn and 2step learning of the model)
  • lr_adj: learning rate of GNN_DAE
  • lr: learning rate of GNN_C
  • w_decay_adj: l2 regularization parameter for GNN_DAE
  • w_decay: l2 regularization parameter for GNN_C
  • nlayers_adj: number of layers for GNN_DAE
  • nlayers: number of layers for GNN_C
  • hidden_adj: hidden size of GNN_DAE
  • hidden: hidden size of GNN_C
  • dropout1: dropout rate for GNN_DAE
  • dropout2: dropout rate for GNN_C
  • dropout_adj1: dropout rate on adjacency matrix for GNN_DAE
  • dropout_adj2: dropout rate on adjacency matrix for GNN_C
  • dropout2: dropout rate for GNN_C
  • k: k for knn initialization with knn
  • lambda_: weight of loss of GNN_DAE
  • nr: ratio of zeros to ones to mask out for binary features
  • ratio: ratio of ones to mask out for binary features and ratio of features to mask out for real values features
  • model: model to run (choices are end2end, knn_gcn, or 2step)
  • sparse: whether to make the adjacency sparse and run operations on sparse mode
  • gen_mode: identifies the graph generator
  • non_linearity: non-linearity to apply on the adjacency matrix
  • mlp_act: activation function to use for the mlp graph generator
  • mlp_h: hidden size of the mlp graph generator
  • noise: type of noise to add to features (mask or normal)
  • loss: type of GNN_DAE loss (mse or bce)
  • epoch_d: epochs_adj / epoch2 of the epochs will be used for training GNN_DAE
  • half_val_as_train: use half of validation for train to get Cora390 and Citeseer370

Reproducing the Results in the Paper

In order to reproduce the results presented in the paper, you should run the following commands:

Cora

FP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.001 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.25 -k 30 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5

MLP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_h 1433 -mlp_act relu -epoch_d 5

MLP-D

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 15 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act relu -epoch_d 5

Citeseer

FP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.4 -dropout_adj2 0.4 -k 30 -lambda_ 1.0 -nr 1 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5

MLP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 30 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_act relu -mlp_h 3703 -epoch_d 5

MLP-D

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.001 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act tanh -epoch_d 5

Cora390

FP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 100.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5 -half_val_as_train 1

MLP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_h 1433 -mlp_act relu -epoch_d 5 -half_val_as_train 1

MLP-D

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.001 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act relu -epoch_d 5 -half_val_as_train 1

Citeseer370

FP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.5 -k 30 -lambda_ 1.0 -nr 1 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5 -half_val_as_train 1

MLP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.25 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 30 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_act tanh -mlp_h 3703 -epoch_d 5 -half_val_as_train 1

MLP-D

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act tanh -epoch_d 5 -half_val_as_train 1

Pubmed

MLP

Run the following command:

python main.py -dataset pubmed -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 128 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.5 -k 15 -lambda_ 10.0 -nr 5 -ratio 20 -model end2end -gen_mode 1 -non_linearity relu -mlp_h 500 -mlp_act relu -epoch_d 5 -sparse 1

MLP-D

Run the following command:

python main.py -dataset pubmed -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 128 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.25 -k 15 -lambda_ 100.0 -nr 5 -ratio 20 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act tanh -epoch_d 5 -sparse 1

ogbn-arxiv

MLP

Run the following command:

python main.py -dataset ogbn-arxiv -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0 -nlayers 2 -nlayers_adj 2 -hidden 256 -hidden_adj 256 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 15 -lambda_ 10.0 -nr 5 -ratio 100 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_h 128 -mlp_act relu -epoch_d 2001 -sparse 1 -loss mse -noise mask

MLP-D

Run the following command:

python main.py -dataset ogbn-arxiv -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0 -nlayers 2 -nlayers_adj 2 -hidden 256 -hidden_adj 256 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.25 -k 15 -lambda_ 10.0 -nr 5 -ratio 100 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act relu -epoch_d 2001 -sparse 1 -loss mse -noise normal

Cite SLAPS

If you use this package for published work, please cite the following:

@inproceedigs{fatemi2021slaps,
  title={SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks},
  author={Fatemi, Bahare and Asri, Layla El and Kazemi, Seyed Mehran},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Convolutional Neural Network for Text Classification in Tensorflow

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo

Denny Britz 5.5k Jan 02, 2023
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022