N-Omniglot is a large neuromorphic few-shot learning dataset

Overview

N-Omniglot

[Paper] || [Dataset]

N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses Davis346 to capture the writing of the characters. The recordings can be displayed using DV software's playback function (https://inivation.gitlab.io/dv/dv-docs/docs/getting-started.html). N-Omniglot is sparse and has little similarity between frames. It can be used for event-driven pattern recognition, few-shot learning and stroke generation.

It is a neuromorphic event dataset composed of 1623 handwritten characters obtained by the neuromorphic camera Davis346. Each type of character contains handwritten samples of 20 different participants. The file structure and sample can be found in the corresponding PNG files in samples.

The raw data can be found on the https://doi.org/10.6084/m9.figshare.16821427.

Structure

filestruct_00.pngsample_00

How to use N-Omniglot

We also provide an interface to this dataset in data_loader so that users can easily access their own applications using Pytorch, Python 3 is recommended.

  • NOmniglot.py: basic dataset
  • nomniglot_full.py: get full train and test loader, for direct to SCNN
  • nomniglot_train_test.py: split train and test loader, for Siamese Net
  • nomniglot_nw_ks.py: change into n-way k-shot, for MAML
  • utils.py: some functions

As with DVS-Gesture, each N-Omniglot raw file contains 20 samples of event information. The NOmniglot class first splits N-Omniglot dataset into single sample and stores in the event_npy folder for long-term use (reference SpikingJelly). Later, the event data will be encoded into different event frames according to different parameters. The main parameters include frame number and data type. The event type is used to output the event frame of the operation OR, and the float type is used to output the firing rate of each pixel.

Before you run this code, some packages need to be ready:

pip install dv
pip install pandas
torch
torchvision >= 0.8.1
  • use nomniglot_full:

db_train = NOmniglotfull('./data/', train=True, frames_num=4, data_type='frequency', thread_num=16)
dataloadertrain = DataLoader(db_train, batch_size=16, shuffle=True, num_workers=16, pin_memory=True)
for x_spt, y_spt, x_qry, y_qry in dataloadertrain:
    print(x_spt.shape)
  • use nomniglot_pair:

data_type = 'frequency'
T = 4
trainSet = NOmniglotTrain(root='data/', use_frame=True, frames_num=T, data_type=data_type, use_npz=True, resize=105)
testSet = NOmniglotTest(root='data/', time=1000, way=5, shot=1, use_frame=True, frames_num=T, data_type=data_type, use_npz=True, resize=105)
trainLoader = DataLoader(trainSet, batch_size=48, shuffle=False, num_workers=4)
testLoader = DataLoader(testSet, batch_size=5 * 1, shuffle=False, num_workers=4)
for batch_id, (img1, img2) in enumerate(testLoader, 1):
    # img1.shape [batch, T, 2, H, W]
    print(batch_id)
    break

for batch_id, (img1, img2, label) in enumerate(trainLoader, 1):
    # img1.shape [batch, T, 2, H, W]
    print(batch_id)
    break
  • use nomniglot_nw_ks:

db_train = NOmniglotNWayKShot('./data/', n_way=5, k_shot=1, k_query=15,
                                  frames_num=4, data_type='frequency', train=True)
dataloadertrain = DataLoader(db_train, batch_size=16, shuffle=True, num_workers=16, pin_memory=True)
for x_spt, y_spt, x_qry, y_qry in dataloadertrain:
    print(x_spt.shape)
db_train.resampling()

Experiment

method

We provide four modified SNN-appropriate few-shot learning methods in examples to provide a benchmark for N-Omniglot dataset. Different way, shot, data_type, frames_num can be choose to run the experiments. You can run a method directly in the PyCharm environment

Reference

[1] Yang Li, Yiting Dong, Dongcheng Zhao, Yi Zeng. N-Omniglot: a Large-scale Dataset for Spatio-temporal Sparse Few-shot Learning. figshare https://doi.org/10.6084/m9.figshare.16821427.v2 (2021).

[2] Yang Li, Yiting Dong, Dongcheng Zhao, Yi Zeng. N-Omniglot: a Large-scale Dataset for Spatio-temporal Sparse Few-shot Learning. arXiv preprint arXiv:2112.13230 (2021).

Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022