Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Overview

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Project Structure

./
├── DataProcess
│   ├── __pycache__
│   ├── convert2bio.py
│   ├── convert_jsonl.py
│   ├── handle_numbers.py
│   ├── load_data.py
│   └── statistic.py
├── README.md
├── __pycache__
├── chinese_L-12_H-768_A-12                                    BERT权重
│   ├── bert_config.json
│   ├── bert_model.ckpt.data-00000-of-00001
│   ├── bert_model.ckpt.index
│   ├── bert_model.ckpt.meta
│   └── vocab.txt
├── chinese_bert_wwm                                           BERT_wwm权重
│   ├── bert_config.json
│   ├── bert_model.ckpt.data-00000-of-00001
│   ├── bert_model.ckpt.index
│   ├── bert_model.ckpt.meta
│   └── vocab.txt
├── chinese_macbert_base                                       macBERT权重
│   ├── chinese_macbert_base.ckpt.data-00000-of-00001
│   ├── chinese_macbert_base.ckpt.index
│   ├── chinese_macbert_base.ckpt.meta
│   ├── macbert_base_config.json
│   └── vocab.txt
├── chinese_roberta_wwm_ext_L-12_H-768_A-12                    roberta权重
│   ├── bert_config.json
│   ├── bert_model.ckpt.data-00000-of-00001
│   ├── bert_model.ckpt.index
│   ├── bert_model.ckpt.meta
│   └── vocab.txt
├── config                                                     
│   ├── __pycache__
│   ├── config.py                                              配置文件
│   └── pulmonary_label2id.json                                label id
├── data                                                       数据集
│   ├── pulmonary.test
│   ├── pulmonary.train
│   └── sict_train.txt
├── environment.yaml                                           conda环境配置文件
├── evaluate.py
├── generator_train.py
├── keras_bert                                                 keras_bert(可pip下)
├── keras_contrib                                              keras_contrib(可pip下)
├── log                                                        训练nohup日志
│   ├── chinese_L-12_H-768_A-12.out
│   ├── chinese_macbert_base.out
│   ├── chinese_roberta_wwm_ext_L-12_H-768_A-12.out
│   └── electra_180g_base.out
├── model.py                                                   模型构建文件
├── models                                                     保存的模型权重
│   ├── pulmonary_chinese_L-12_H-768_A-12_ner.h5
│   ├── pulmonary_chinese_bert_wwm_ner.h5
│   ├── pulmonary_chinese_macbert_base_ner.h5
│   └── pulmonary_chinese_roberta_wwm_ext_L-12_H-768_A-12_ner.h5
├── predict.py                                                 预测
├── report                                                     模型实体F1评估报告
│   ├── pulmonary_chinese_L-12_H-768_A-12_evaluate.txt
│   ├── pulmonary_chinese_L-12_H-768_A-12_predict.json
│   ├── pulmonary_chinese_bert_wwm_evaluate.txt
│   ├── pulmonary_chinese_bert_wwm_predict.json
│   ├── pulmonary_chinese_macbert_base_evaluate.txt
│   ├── pulmonary_chinese_macbert_base_predict.json
│   ├── pulmonary_chinese_roberta_wwm_ext_L-12_H-768_A-12_evaluate.txt
│   └── pulmonary_chinese_roberta_wwm_ext_L-12_H-768_A-12_predict.json
├── requirements.txt                                           pip环境
├── test.py                                                    
├── train.py                                                   训练
└── utils                                                      
    ├── FGM.py                                                 FGM对抗
    ├── __pycache__
    └── path.py                                                所有路径

56 directories, 193 files

Dataset

三甲医院肺结节数据集,20000+字,BIO格式,形如:

中	B-ORG
共	I-ORG
中	I-ORG
央	I-ORG
致	O
中	B-ORG
国	I-ORG
致	I-ORG
公	I-ORG
党	I-ORG
十	I-ORG
一	I-ORG
大	I-ORG
的	O
贺	O
词	O

ATTENTION: 在处理自己数据集的时候需要注意:

  • 字与标签之间用空格("\ ")隔开
  • 其中句子与句子之间使用空行隔开

Steps

  1. 替换数据集
  2. 使用DataProcess/load_data.py生成label2id.txt文件
  3. 修改config/config.py中的MAX_SEQ_LEN(超过截断,少于填充,最好设置训练集、测试集中最长句子作为MAX_SEQ_LEN)
  4. 下载权重,放到项目中
  5. 修改public/path.py中的地址
  6. 根据需要修改model.py模型结构
  7. 修改config/config.py的参数
  8. 训练前debug看下input_train_labels,result_train对不对,input_train_types全是0
  9. 训练

Model

BERT

roberta

macBERT

BERT_wwm

Train

运行train.py

Evaluate

运行evaluate/f1_score.py

BERT

           precision    recall  f1-score   support

     SIGN     0.6651    0.7354    0.6985       189
  ANATOMY     0.8333    0.8409    0.8371       220
 DIAMETER     1.0000    1.0000    1.0000        16
  DISEASE     0.4915    0.6744    0.5686        43
 QUANTITY     0.8837    0.9157    0.8994        83
TREATMENT     0.3571    0.5556    0.4348         9
  DENSITY     1.0000    1.0000    1.0000         8
    ORGAN     0.4500    0.6923    0.5455        13
LUNGFIELD     1.0000    0.5000    0.6667         6
    SHAPE     0.5714    0.5714    0.5714         7
   NATURE     1.0000    1.0000    1.0000         6
 BOUNDARY     1.0000    0.6250    0.7692         8
   MARGIN     0.8333    0.8333    0.8333         6
  TEXTURE     1.0000    0.8571    0.9231         7

micro avg     0.7436    0.7987    0.7702       621
macro avg     0.7610    0.7987    0.7760       621

roberta

           precision    recall  f1-score   support

  ANATOMY     0.8624    0.8545    0.8584       220
  DENSITY     0.8000    1.0000    0.8889         8
     SIGN     0.7347    0.7619    0.7481       189
 QUANTITY     0.8977    0.9518    0.9240        83
  DISEASE     0.5690    0.7674    0.6535        43
 DIAMETER     1.0000    1.0000    1.0000        16
TREATMENT     0.3333    0.5556    0.4167         9
 BOUNDARY     1.0000    0.6250    0.7692         8
LUNGFIELD     1.0000    0.6667    0.8000         6
   MARGIN     0.8333    0.8333    0.8333         6
  TEXTURE     1.0000    0.8571    0.9231         7
    SHAPE     0.5714    0.5714    0.5714         7
   NATURE     1.0000    1.0000    1.0000         6
    ORGAN     0.6250    0.7692    0.6897        13

micro avg     0.7880    0.8261    0.8066       621
macro avg     0.8005    0.8261    0.8104       621

macBERT

           precision    recall  f1-score   support

  ANATOMY     0.8773    0.8773    0.8773       220
     SIGN     0.6538    0.7196    0.6851       189
  DISEASE     0.5893    0.7674    0.6667        43
 QUANTITY     0.9070    0.9398    0.9231        83
    ORGAN     0.5882    0.7692    0.6667        13
  TEXTURE     1.0000    0.8571    0.9231         7
 DIAMETER     1.0000    1.0000    1.0000        16
TREATMENT     0.3750    0.6667    0.4800         9
LUNGFIELD     1.0000    0.5000    0.6667         6
    SHAPE     0.4286    0.4286    0.4286         7
   NATURE     1.0000    1.0000    1.0000         6
  DENSITY     1.0000    1.0000    1.0000         8
 BOUNDARY     1.0000    0.6250    0.7692         8
   MARGIN     0.8333    0.8333    0.8333         6

micro avg     0.7697    0.8180    0.7931       621
macro avg     0.7846    0.8180    0.7977       621

BERT_wwm

           precision    recall  f1-score   support

  DISEASE     0.5667    0.7907    0.6602        43
  ANATOMY     0.8676    0.8636    0.8656       220
 QUANTITY     0.8966    0.9398    0.9176        83
     SIGN     0.7358    0.7513    0.7435       189
LUNGFIELD     1.0000    0.6667    0.8000         6
TREATMENT     0.3571    0.5556    0.4348         9
 DIAMETER     0.9375    0.9375    0.9375        16
 BOUNDARY     1.0000    0.6250    0.7692         8
  TEXTURE     1.0000    0.8571    0.9231         7
   MARGIN     0.8333    0.8333    0.8333         6
    ORGAN     0.5882    0.7692    0.6667        13
  DENSITY     1.0000    1.0000    1.0000         8
   NATURE     1.0000    1.0000    1.0000         6
    SHAPE     0.5000    0.5714    0.5333         7

micro avg     0.7889    0.8245    0.8063       621
macro avg     0.8020    0.8245    0.8104       621

Predict

运行predict/predict_bio.py

Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Neelanjan Manna 1 Dec 22, 2021
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
Generate text line images for training deep learning OCR model (e.g. CRNN)

Generate text line images for training deep learning OCR model (e.g. CRNN)

532 Jan 06, 2023
Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Raj Dabre 121 Jan 05, 2023
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence

THUNLP-MT 9 Jun 27, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

Bernhard Liebl 2 Jun 10, 2022
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023