Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Related tags

Deep LearningACSL
Overview

Adaptive Class Suppression Loss for Long-Tail Object Detection

This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection. [Paper]

Framework

Requirements

1. Environment:

The requirements are exactly the same as BalancedGroupSoftmax. We tested on the following settings:

  • python 3.7
  • cuda 10.0
  • pytorch 1.2.0
  • torchvision 0.4.0
  • mmcv 0.2.14
conda create -n mmdet python=3.7 -y
conda activate mmdet

pip install cython
pip install numpy
pip install torch
pip install torchvision
pip install pycocotools
pip install matplotlib
pip install terminaltables

# download the source code of mmcv 0.2.14 from https://github.com/open-mmlab/mmcv/tree/v0.2.14
cd mmcv-0.2.14
pip install -v -e .
cd ../

git clone https://github.com/CASIA-IVA-Lab/ACSL.git

cd ACSL/lvis-api/
python setup.py develop

cd ../
python setup.py develop

2. Data:

a. For dataset images:

# Make sure you are in dir ACSL

mkdir data
cd data
mkdir lvis
mkdir pretrained_models
mkdir download_models
  • If you already have COCO2017 dataset, it will be great. Link train2017 and val2017 folders under folder lvis.
  • If you do not have COCO2017 dataset, please download: COCO train set and COCO val set and unzip these files and mv them under folder lvis.

b. For dataset annotations:

c. For pretrained models:

Download the corresponding pre-trained models below.

  • To train baseline models, we need models trained on COCO to initialize. Please download the corresponding COCO models at mmdetection model zoo.

  • Move these model files to ./data/pretrained_models/

d. For download_models:

Download the trained baseline models and ACSL models from BaiduYun, code is 2jp3

  • To train ACSL models, we need corresponding baseline models trained on LVIS to initialize and fix all parameters except for the last FC layer.

  • Move these model files to ./data/download_models/

After all these operations, the folder data should be like this:

    data
    ├── lvis
    │   ├── lvis_v0.5_train.json
    │   ├── lvis_v0.5_val.json
    │   ├── train2017
    │   │   ├── 000000100582.jpg
    │   │   ├── 000000102411.jpg
    │   │   ├── ......
    │   └── val2017
    │       ├── 000000062808.jpg
    │       ├── 000000119038.jpg
    │       ├── ......
    └── pretrained_models
    │       ├── faster_rcnn_r50_fpn_2x_20181010-443129e1.pth
    │       ├── ......
    └── download_models
            ├── R50-baseline.pth
            ├── ......

Training

Note: Please make sure that you have prepared the pretrained_models and the download_models and they have been put to the path specified in ${CONIFG_FILE}.

Use the following commands to train a model.

# Single GPU
python tools/train.py ${CONFIG_FILE}

# Multi GPU distributed training
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

All config files are under ./configs/.

  • ./configs/baselines: all baseline models.
  • ./configs/acsl: models for ACSL models.

For example, to train a ACSL model with Faster R-CNN R50-FPN:

# Single GPU
python tools/train.py configs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl.py

# Multi GPU distributed training (for 8 gpus)
./tools/dist_train.sh configs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl.py 8

Important: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16). According to the Linear Scaling Rule, you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu. (Cited from mmdetection.)

Testing

Use the following commands to test a trained model.

# single gpu test
python tools/test_lvis.py \
 ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

# multi-gpu testing
./tools/dist_test_lvis.sh \
 ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
  • $RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
  • $EVAL_METRICS: Items to be evaluated on the results. bbox for bounding box evaluation only. bbox segm for bounding box and mask evaluation.

For example (assume that you have finished the training of ACSL models.):

  • To evaluate the trained ACSL model with Faster R-CNN R50-FPN for object detection:
# single-gpu testing
python tools/test_lvis.py configs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl.py \
 ./work_dirs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl/epoch_12.pth \
  --out acsl_val_result.pkl --eval bbox

# multi-gpu testing (8 gpus)
./tools/dist_test_lvis.sh configs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl.py \
./work_dirs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl/epoch_12.pth 8 \
--out acsl_val_result.pkl --eval bbox

Results and models

Please refer to our paper for more details.

Method Models bbox mAP Config file Pretrained Model Model
baseline R50-FPN 21.18 file COCO-R50 R50-baseline
ACSL R50-FPN 26.36 file R50-baseline R50-acsl
baseline R101-FPN 22.36 file COCO-R101 R101-baseline
ACSL R101-FPN 27.49 file R101-baseline R101-acsl
baseline X101-FPN 24.70 file COCO-X101 X101-baseline
ACSL X101-FPN 28.93 file X101-baseline X101-acsl
baseline Cascade-R101 25.14 file COCO-Cas-R101 Cas-R101-baseline
ACSL Cascade-R101 29.71 file Cas-R101-baseline Cas-R101-acsl
baseline Cascade-X101 27.14 file COCO-Cas-X101 Cas-X101-baseline
ACSL Cascade-X101 31.47 file Cas-X101-baseline Cas-X101-acsl

Important: The code of BaiduYun is 2jp3

Citation

@inproceedings{wang2021adaptive,
  title={Adaptive Class Suppression Loss for Long-Tail Object Detection},
  author={Wang, Tong and Zhu, Yousong and Zhao, Chaoyang and Zeng, Wei and Wang, Jinqiao and Tang, Ming},
  journal={CVPR},
  year={2021}
}

Credit

This code is largely based on BalancedGroupSoftmax and mmdetection v1.0.rc0 and LVIS API.

Owner
CASIA-IVA-Lab
Image & Video Analysis Group, Institute of Automation, Chinese Academy of Sciences
CASIA-IVA-Lab
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022