The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Related tags

Deep LearningDisDis
Overview

Personalized Trajectory Prediction via Distribution Discrimination (DisDis)

The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021,arxiv.

Introduction

The motivation of DisDis is to learn the latent distribution to represent different motion patterns, where the motion pattern of each person is personalized due to his/her habit. We learn the distribution discriminator in a self-supervised manner, which encourages the latent variable distributions of the same motion pattern to be similar while pushing the ones of the different motion patterns away. DisDis is a plug-and-play module which could be integrated with existing multi-modal stochastic predictive models to enhance the discriminative ability of latent distribution. Besides, we propose a new evaluation metric for stochastic trajectory prediction methods. We calculate the probability cumulative minimum distance (PCMD) curve to comprehensively and stably evaluate the learned model and latent distribution, which cumulatively selects the minimum distance between sampled trajectories and ground-truth trajectories from high probability to low probability. PCMD considers the predictions with corresponding probabilities and evaluates the prediction model under the whole latent distribution.

image Figure 1. Training process for the DisDis method. DisDis regards the latent distribution as the motion pattern and optimizes the trajectories with the same motion pattern to be close while the ones with different patterns are pushed away, where the same latent distributions are in the same color. For a given history trajectory, DisDis predicts a latent distribution as the motion pattern, and takes the latent distribution as the discrimination to jointly optimize the embeddings of trajectories and latent distributions.

Requirements

  • Python 3.6+
  • PyTorch 1.4

To build all the dependency, you can follow the instruction below.

pip install -r requirements.txt

Our code is based on Trajectron++. Please cite it if it's useful.

Dataset

The preprocessed data splits for the ETH and UCY datasets are in experiments/pedestrians/raw/. Before training and evaluation, execute the following to process the data. This will generate .pkl files in experiments/processed.

cd experiments/pedestrians
python process_data.py

The train/validation/test/ splits are the same as those found in Social GAN.

Model training

You can train the model for zara1 dataset as

python train.py --eval_every 10 --vis_every 1 --train_data_dict zara1_train.pkl --eval_data_dict zara1_val.pkl --offline_scene_graph yes --preprocess_workers 2 --log_dir ../experiments/pedestrians/models --log_tag _zara1_disdis --train_epochs 100 --augment --conf ../experiments/pedestrians/models/config/config_zara1.json --device cuda:0

The pre-trained models can be found in experiments/pedestrians/models/. And the model configuration is in experiments/pedestrians/models/config/.

Model evaluation

To reproduce the PCMD results in Table 1, you can use

python evaluate_pcmd.py --node_type PEDESTRIAN --data ../processed/zara1_test.pkl --model models/zara1_pretrain --checkpoint 100

To use the most-likely strategy, you can use

python evaluate_mostlikely_z.py --node_type PEDESTRIAN --data ../processed/zara1_test.pkl --model models/zara1_pretrain --checkpoint 100

Welcome to use our PCMD evaluation metric in your experiments. It is a more comprehensive and stable evaluation metric for stochastic trajectory prediction methods.

Citation

The bibtex of our paper 'Personalized Trajectory Prediction via Distribution Discrimination' is provided below:

@inproceedings{Disdis,
  title={Personalized Trajectory Prediction via Distribution Discrimination},
  author={Chen, Guangyi and Li, Junlong and Zhou, Nuoxing and Ren, Liangliang and Lu, Jiwen},
  booktitle={ICCV},
  year={2021}
}
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022