BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

Related tags

Deep LearningBLEND
Overview

BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applications: 1) finding overlapping reads and 2) read mapping. Finding fuzzy seed matches enable BLEND to find both 1) exact-matching seeds and 2) highly similar seeds. We integrate the BLEND mechanism into Minimap2. We make the following changes in the original Minimap2 implementation:

  • We enable the Minimap2 implementation so that it can find fuzzy seed matches using the BLEND mechanism as the original implementation can only find the exact-matching seeds between sequences. To this end, we change the sketch.c implementation of Minimap2 so that 1) we can generate the seeds that BLEND finds and 2) generate the hash values for seeds to find fuzzy seed matches.
  • We enable the Minimap2 implementation to use seeds longer than 256 bases so that it can store longer seeds when using BLEND by combining the minimizer k-mer with many neighbor k-mers (e.g., hundreds), if necessary. The current implementation of Minimap2 allocates 8-bits to store seed lengths up to 256 characters. We change this requirement in various places of the implementation (e.g., line 112 in sketch.c and line 239 in index.c) so that BLEND can use 14 bits to store seed lengths up to 16384 characters. We do this because BLEND merges many k-mers into a single seed, which may be much larger than a 256 character-long sequence.
  • We disable filtering out the minimizer k-mers (i.e., seeds in BLEND's case) based on their number of maximum occurence. We do this because BLEND enables generating the same hash value for similar seeds, which may lead to many hash values above the maximum threshold. We do not oppose enabling this filtering mechanism, but it requires further investigation on how to set this threshold value for different parameter settings in BLEND. Thus, filtering out the seeds that occur more than X times is a future work for BLEND so that we can define the value X without reducing the accuracy of BLEND.

Cloning the source code

  • Download the code from its GitHub repository:
git clone https://github.com/CMU-SAFARI/BLEND.git blend
  • Alternatively, if you would like to compile the SIMD-compatible version of BLEND, you can clone BLEND with its simde submodule:
git clone --recurse-submodules https://github.com/CMU-SAFARI/BLEND.git blend

Compiling from the source code

Compilation process is similar to Minimap2's compilation as also explained in more detail here. We keep the support for using the SIMD instructions that Minimap2 implements.

Before compiling BLEND:

  • Make sure you have a C compiler and GNU make,

To compile:

cd blend && make

To compile the SIMD-compatible version:

cd blend && make simd

If the compilation is successful, the binary called blend will be located under bin.

Usage

You can print the help message to learn how to use blend:

blend -h

Below we show how to use blend for 1) finding overlapping reads and 2) read mapping when using the default preset parameters for each use application and genome.

BLEND provides the preset parameters depending on:

  • The application: 1) Finding overlapping reads and 2) read mapping.
  • Sequencing Technology: 1) Accurate long reads (e.g., PacBio HiFi reads), 2) erroneous long reads (e.g., PacBio CLR reads), and 2) short reads (i.e., Illumina paired-end reads).
  • Genome: 1) Human, 2) eukaryotic, and 3) bacterial genomes.

Finding Overlapping Reads

Assume that you would like to perform all-vs-all overlapping between all pairs of HiFi reads from a human genome located in file reads.fastq. To find overlapping reads and store them in the PAF file output.paf:

blend -x ava-hifi --genome human reads.fastq reads.fastq > output.paf

Read Mapping

Assume that you would like to map PacBio CLR reads in file reads.fastq to a reference genome in file ref.fasta. To generate the read mapping with the CIGAR output in the SAM file output.sam:

blend -ax map-pb ref.fasta reads.fastq > output.sam

Getting Help

Since we integrate the BLEND mechanism into Minimap2, most portion of the parameters are the same as explained in the man page of Minimap2 or as explained in the public page of minimap2.1, which is subject to change as the new versions of Minamp2 role out. We explain the parameters unique to the BLEND implementation below.

The following option (i.e., neighbors) defines the number of consecutive k-mers that BLEND uses to generate a seed. Thus, if the k-mer length is k, the seed length is neighbors + k - 1. Default value is 10.

--neighbors INT Combines INT amount of k-mers to generate a seed. [10]

The following option (i.e., fixed-bits) defines the number of bits that BLEND uses for a hash value of a seed. By default, it uses 2 bits per character of a k-mer and, thus, 2*k bits for a hash value of a seed. This value can be decreased to increase the collision rate for assigning the same hash values for similar seeds, but also may start assigning the same hash value for slightly dissimilar seeds.

--fixed-bits INT BLEND uses INT number of bits when generating hash values of seeds rather than using 2*k number of bits. Useful when collision rate needs to be decreased than 2*k bits. Setting this option to 0 uses 2*k bits for hash values. [0].

BLEND also provides preset options. Some of these preset options also depend on the genome type as shown below:

-x map-ont (-k15 -w10 --fixed-bits=30 --neighbors=3)
-x ava-ont (-k15 -w20 --fixed-bits=30 --neighbors=3 -e0 -m100 -r2k)
-x map-pb (-Hk15 -w20 --fixed-bits=30 --neighbors=3)
-x ava-pb (-Hk19 -Xw20 --fixed-bits=32 --neighbors=3 -e0 -m100)
-x map-hifi --genome human (-k15 -w500 --fixed-bits=38 --neighbors=100 -U50,500 -g10k -A1 -B4 -O6,26 -E2,1 -s200)
-x map-hifi --genome eukaryote (-k15 -w500 --fixed-bits=30 --neighbors=5 -U50,500 -g10k -A1 -B4 -O6,26 -E2,1 -s200)
-x map-hifi --genome bacteria (-k15 -w500 --fixed-bits=30 --neighbors=3 -U50,500 -g10k -A1 -B4 -O6,26 -E2,1 -s200)
-x ava-hifi --genome human (-k15 -Xw500 --fixed-bits=38 --neighbors=10 -e0 -m100)
-x ava-hifi --genome eukaryote (-k15 -Xw500 --fixed-bits=30 --neighbors=10 -e0 -m100)
-x ava-hifi --genome bacteria (-k15 -Xw500 --fixed-bits=30 --neighbors=5 -e0 -m100)

Replicating the results in the paper

We explain how to replicate the results we produce in the BLEND paper in the test directory.

You might also like...
A lightweight deep network for fast and accurate optical flow estimation.
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

Realtime segmentation with ENet, the fast and accurate segmentation net.
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

Code for the TIP 2021 Paper
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Comments
  • A test of BLEND on two real datasets of PacBio CLR and Nanopore reads

    A test of BLEND on two real datasets of PacBio CLR and Nanopore reads

    In the paper https://arxiv.org/abs/2112.08687 BLEND was tested on only one non-HiFi read dataset. That was a simulated read dataset for one of the smallest eukaryotic genomes — the genome of Saccharomyces cerevisiae.

    To test how well BLEND performs on real (non-simulated) datasets of genomes which have more typical sizes, I used it to assemble genomes from these two sets of reads:

    1. Caenorhabditis elegans, PacBio CLR reads used in the article https://www.sciencedirect.com/science/article/pii/S2589004220305770 . For polishing I also used Illumina reads from that article. The nematode genome size is approximately 100 Mbp.
    2. Arabidopsis thaliana, Nanopore reads https://www.ncbi.nlm.nih.gov/sra/?term=ERR5530736 . For polishing I also used Illumina reads https://www.ncbi.nlm.nih.gov/sra/?term=ERR2173372 . The size of arabidopsis' genome is approximately 120 Mbp.

    I searched for overlaps, then assembled the genomes with Miniasm using default parameters, then polished the assemblies using long reads with Racon, and then polished the assemblies using both long and short reads with HyPo. The assemblies were compared with references using QUAST.

    The search for overlaps was performed with Blend 1.0 and, for comparison, with Minimap 2.22, using 22 threads of Intel Xeon X5670.

    For the nematode, results are as follows: | | Minimap2 | BLEND | | --- | --- | --- | | Time to find overlaps | 10m | 3h 37m | | Maximum RAM consumption | 20G | 44G | | N50 | 2,056,511 | 1,915,190 | | NGA50 | 589,675 | 563,498 | | misassemblies | 740 | 707 | | Genome fraction | 99.692% | 99.683% | | Total length | 109,516,352 | 108,958,103 |

    So, the assemblies of the nematode genome made with Minimap2 and with BLEND are similar. However, Blend required 20x more time to find overlaps and 2x more RAM.

    For arabidopsis Minimap found overlaps in 30 minutes using 29G RAM. I terminated BLEND because it didn't finish in 24 hours. At the moment I terminated it, BLEND was using 300G RAM.

    So, it seems that on non-HiFi datasets for genomes not as small as the genome of Saccharomyces cerevisiae BLEND is slower than Minimap2 and uses more RAM. This may be so because BLEND doesn't deal efficiently with repetitive seeds.

    opened by shelkmike 2
  • Some questions about the article

    Some questions about the article

    Could you please answer some questions about the article (https://arxiv.org/pdf/2112.08687.pdf):

    1. For HiFi reads you used Minimap2 with the option --ava-pb that is intended for PacBio CLR reads and not PacBio HiFi reads (Table S1). Why didn't you try Minimap2 with some other parameters? For example you could have increased the window size and the minimizer size. I suppose this will make Minimap2 faster and decrease its RAM consumption, thus reducing the difference between BLEND and Minimap2 on HiFi reads.
    2. Why did you use N50 and not NGA50 (Table 2)? N50 may be inflated due to misassemblies that result in improper sequence junctions.
    3. Why did you measure k-mer completeness and average identity using unpolished assemblies (Table 3)? Miniasm assemblies require polishing, because the accuracy of its contigs is the same as the accuracy of the reads used for the assembly. The higher accuracy of BLEND in Table 3 means that contigs made with BLEND are composed of slightly more accurate reads than contigs made with Minimap2, but the difference in accuracy may disappear after polishing.
    4. Taking into account that you used only one non-HiFi long read dataset and BLEND performed on it worse than Minimap2 (N50 in Table 2), is it correct to say that BLEND is probably fit only for HiFi long reads, and not PacBio CLR or Nanopore reads?

    With best wishes, Mikhail Schelkunov

    opened by shelkmike 1
Owner
SAFARI Research Group at ETH Zurich and Carnegie Mellon University
Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University.
SAFARI Research Group at ETH Zurich and Carnegie Mellon University
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019