This code is an implementation for Singing TTS.

Overview

MLP Singer

This code is an implementation for Singing TTS. The algorithm is based on the following papers:

Tae, J., Kim, H., & Lee, Y. (2021). MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. arXiv preprint arXiv:2106.07886.
Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., ... & Dosovitskiy, A. (2021). Mlp-mixer: An all-mlp architecture for vision. arXiv preprint arXiv:2105.01601.

Structure

  • Structure is based on the MLP Singer.
  • I changed several hyper parameters and data type
    • One of mel or spectrogram is can be selected as a feature type.
    • Token type is changed from phoneme to grapheme.

Used dataset

Hyper parameters

Before proceeding, please set the pattern, inference, and checkpoint paths in Hyper_Parameters.yaml according to your environment.

  • Sound

    • Setting basic sound parameters.
  • Tokens

    • The number of Lyric token.
  • Max_Note

    • The highest note value for embedding.
  • Duration

    • Min duration is used at pattern generating only.
    • Max duration is decided the maximum time step of model. MLP mixer always use the maximum time step.
    • Equality set the strategy about syllable to grapheme.
      • When True, onset, nucleus, and coda have same length or ±1 difference.
      • When False, onset and coda have Consonant_Duration length, and nucleus has duration - 2 * Consonant_Duration.
  • Feature_Type

    • Setting the feature type (Mel or Spectrogram).
  • Encoder

    • Setting the encoder(embedding).
  • Mixer

    • Setting the MLP mixer.
  • Train

    • Setting the parameters of training.
  • Inference_Batch_Size

    • Setting the batch size when inference
  • Inference_Path

    • Setting the inference path
  • Checkpoint_Path

    • Setting the checkpoint path
  • Log_Path

    • Setting the tensorboard log path
  • Use_Mixed_Precision

    • Setting using mixed precision
  • Use_Multi_GPU

    • Setting using multi gpu
    • By the nvcc problem, Only linux supports this option.
    • If this is True, device parameter is also multiple like '0,1,2,3'.
    • And you have to change the training command also: please check multi_gpu.sh.
  • Device

    • Setting which GPU devices are used in multi-GPU enviornment.
    • Or, if using only CPU, please set '-1'. (But, I don't recommend while training.)

Generate pattern

  • Current version does not support any open source dataset.

Inference file path while training for verification.

  • Inference_for_Training
    • There are three examples for inference.
    • It is midi file based script.

Run

Command

Single GPU

python Train.py -hp  -s 
  • -hp

    • The hyper paramter file path
    • This is required.
  • -s

    • The resume step parameter.
    • Default is 0.
    • If value is 0, model try to search the latest checkpoint.

Multi GPU

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 OMP_NUM_THREADS=32 python -m torch.distributed.launch --nproc_per_node=8 Train.py --hyper_parameters Hyper_Parameters.yaml --port 54322
Owner
Heejo You
Main focus: Psycholinguistics / Mechine learning / Deep learning
Heejo You
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021