(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

Related tags

Deep LearningDARS
Overview

DARS

Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021 (oral).

framework

Authors: Ruifei He*, Jihan Yang*, Xiaojuan Qi (*equal contribution)

arxiv

Usage

Install

  • Clone this repo:
git clone https://https://github.com/CVMI-Lab/DARS.git
cd DARS
  • Create a conda virtual environment and activate it:
conda create -n DARS python=3.7 -y
conda activate DARS
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
  • Install Apex:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • Install other requirements:
pip install opencv-python==4.4.0.46 tensorboardX pyyaml

Initialization weights

For PSPNet50, we follow PyTorch Semantic Segmentation and use Imagenet pre-trained weights, which could be found here.

For Deeplabv2, we follow the exact same settings in semisup-semseg, AdvSemiSeg and use Imagenet pre-trained weights.

mkdir initmodel  
# Put the initialization weights under this folder. 
# You can check model/pspnet.py or model/deeplabv2.py.

Data preparation

mkdir dataset  # put the datasets under this folder. You can verify the data path in config files.

Cityscapes

Download the dataset from the Cityscapes dataset server(Link). Download the files named 'gtFine_trainvaltest.zip', 'leftImg8bit_trainvaltest.zip' and extract in dataset/cityscapes/.

For data split, we randomly split the 2975 training samples into 1/8, 7/8 and 1/4 and 3/4. The generated lists are provided in the data_split folder.

Note that since we define an epoch as going through all the samples in the unlabeled data and a batch consists of half labeled and half unlabeled, we repeat the shorter list (labeled list) to the length of the corresponding unlabeled list for convenience.

You can generate random split lists by yourself or use the ones that we provided. You should put them under dataset/cityscapes/list/.

PASCAL VOC 2012

The PASCAL VOC 2012 dataset we used is the commonly used 10582 training set version. If you are unfamiliar with it, please refer to this blog.

For data split, we use the official 1464 training images as labeled data and the 9k augmented set as unlabeled data. We also repeat the labeled list to match that of the unlabeled list.

You should also put the lists under dataset/voc2012/list/.

Training

The config files are located within config folder.

For PSPNet50, crop size 713 requires at least 4*16G GPUs or 8*10G GPUs, and crop size 361 requires at least 1*16G GPU or 2*10G GPUs.

For Deeplabv2, crop size 361 requires at least 1*16G GPU or 2*10G GPUs.

Please adjust the GPU settings in the config files ('train_gpu' and 'test_gpu') according to your machine setup.

The generation of pseudo labels would require 200G usage of disk space, reducing to only 600M after they are generated.

All training scripts for pspnet50 and deeplabv2 are in the tool/scripts folder. For example, to train PSPNet50 for the Cityscapes 1/8 split setting with crop size 713x713, use the following command:

sh tool/scripts/train_psp50_cityscapes_split8_crop713.sh

Acknowledgement

Our code is largely based on PyTorch Semantic Segmentation, and we thank the authors for their wonderful implementation.

We also thank the open-source code from semisup-semseg, AdvSemiSeg, DST-CBC.

Citation

If you find this project useful in your research, please consider cite:

@inproceedings{he2021re,
  title={Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation},
  author={He, Ruifei and Yang, Jihan and Qi, Xiaojuan},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={6930--6940},
  year={2021}
}
Owner
CVMI Lab
CVMI Lab
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022