Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

Overview

NonCuboidRoom

Paper

Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiaojun Yuan.

[Preprint] [Supplementary Material]

(*: Equal contribution)

Installation

The code is tested with Ubuntu 16.04, PyTorch v1.5, CUDA 10.1 and cuDNN v7.6.

# create conda env
conda create -n layout python=3.6
# activate conda env
conda activate layout
# install pytorch
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch
# install dependencies
pip install -r requirements.txt

Data Preparation

Structured3D Dataset

Please download Structured3D dataset and our processed 2D line annotations. The directory structure should look like:

data
└── Structured3D
    │── Structured3D
    │   ├── scene_00000
    │   ├── scene_00001
    │   ├── scene_00002
    │   └── ...
    └── line_annotations.json

SUN RGB-D Dataset

Please download SUN RGB-D dataset, our processed 2D line annotation for SUN RGB-D dataset, and layout annotations of NYUv2 303 dataset. The directory structure should look like:

data
└── SUNRGBD
    │── SUNRGBD
    │    ├── kv1
    │    ├── kv2
    │    ├── realsense
    │    └── xtion
    │── sunrgbd_train.json      // our extracted 2D line annotations of SUN RGB-D train set
    │── sunrgbd_test.json       // our extracted 2D line annotations of SUN RGB-D test set
    └── nyu303_layout_test.npz  // 2D ground truth layout annotations provided by NYUv2 303 dataset

Pre-trained Models

You can download our pre-trained models here:

  • The model trained on Structured3D dataset.
  • The model trained on SUN RGB-D dataset and NYUv2 303 dataset.

Structured3D Dataset

To train the model on the Structured3D dataset, run this command:

python train.py --model_name s3d --data Structured3D

To evaluate the model on the Structured3D dataset, run this command:

python test.py --pretrained DIR --data Structured3D

NYUv2 303 Dataset

To train the model on the SUN RGB-D dataset and NYUv2 303 dataset, run this command:

# first fine-tune the model on the SUN RGB-D dataset
python train.py --model_name sunrgbd --data SUNRGBD --pretrained Structure3D_DIR --split all --lr_step []
# Then fine-tune the model on the NYUv2 subset
python train.py --model_name nyu --data SUNRGBD --pretrained SUNRGBD_DIR --split nyu --lr_step [] --epochs 10

To evaluate the model on the NYUv2 303 dataset, run this command:

python test.py --pretrained DIR --data NYU303

Inference on the customized data

To predict the results of customized images, run this command:

python test.py --pretrained DIR --data CUSTOM

Citation

@article{NonCuboidRoom,
  title   = {Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image},
  author  = {Cheng Yang and
             Jia Zheng and
             Xili Dai and
             Rui Tang and
             Yi Ma and
             Xiaojun Yuan},
  journal = {CoRR},
  volume  = {abs/2104.07986},
  year    = {2021}
}

LICENSE

The code is released under the MIT license. Portions of the code are borrowed from HRNet-Object-Detection and CenterNet.

Acknowledgements

We would like to thank Lei Jin for providing us the code for parsing the layout annotations in SUN RGB-D dataset.

PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022