ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Related tags

Deep Learningmcibi
Overview

Introduction

The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into sssegmentation.

Abstract

This paper studies the context aggregation problem in semantic image segmentation. The existing researches focus on improving the pixel representations by aggregating the contextual information within individual images. Though impressive, these methods neglect the significance of the representations of the pixels of the corresponding class beyond the input image. To address this, this paper proposes to mine the contextual information beyond individual images to further augment the pixel representations. We first set up a feature memory module, which is updated dynamically during training, to store the dataset-level representations of various categories. Then, we learn class probability distribution of each pixel representation under the supervision of the ground-truth segmentation. At last, the representation of each pixel is augmented by aggregating the dataset-level representations based on the corresponding class probability distribution. Furthermore, by utilizing the stored dataset-level representations, we also propose a representation consistent learning strategy to make the classification head better address intra-class compactness and inter-class dispersion. The proposed method could be effortlessly incorporated into existing segmentation frameworks (e.g., FCN, PSPNet, OCRNet and DeepLabV3) and brings consistent performance improvements. Mining contextual information beyond image allows us to report state-of-the-art performance on various benchmarks: ADE20K, LIP, Cityscapes and COCO-Stuff.

Framework

img

Performance

COCOStuff-10k

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 38.84%/39.68% model | log
DeepLabV3 R-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 39.84%/41.49% model | log
DeepLabV3 S-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/32/150 train/test 41.18%/42.15% model | log
DeepLabV3 HRNetV2p-W48 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 39.77%/41.35% model | log
DeepLabV3 ViT-Large 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 44.01%/45.23% model | log

ADE20k

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 44.39%/45.95% model | log
DeepLabV3 R-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 45.66%/47.22% model | log
DeepLabV3 S-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.004/poly/16/180 train/val 46.63%/47.36% model | log
DeepLabV3 HRNetV2p-W48 512x512 LR/POLICY/BS/EPOCH: 0.004/poly/16/180 train/val 45.79%/47.34% model | log
DeepLabV3 ViT-Large 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 49.73%/50.99% model | log

CityScapes

Model Backbone Crop Size Schedule Train/Eval Set mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/440 trainval/test 79.90% model | log
DeepLabV3 R-101-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/440 trainval/test 82.03% model | log
DeepLabV3 S-101-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/500 trainval/test 81.59% model | log
DeepLabV3 HRNetV2p-W48 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/500 trainval/test 82.55% model | log

LIP

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (flip) Download
DeepLabV3 R-50-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 53.73%/54.08% model | log
DeepLabV3 R-101-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 55.02%/55.42% model | log
DeepLabV3 S-101-D8 473x473 LR/POLICY/BS/EPOCH: 0.007/poly/40/150 train/val 56.21%/56.34% model | log
DeepLabV3 HRNetV2p-W48 473x473 LR/POLICY/BS/EPOCH: 0.007/poly/40/150 train/val 56.40%/56.99% model | log

Citation

If this code is useful for your research, please consider citing:

@article{jin2021mining,
  title={Mining Contextual Information Beyond Image for Semantic Segmentation},
  author={Jin, Zhenchao and Gong, Tao and Yu, Dongdong and Chu, Qi and Wang, Jian and Wang, Changhu and Shao, Jie},
  journal={arXiv preprint arXiv:2108.11819},
  year={2021}
}
Owner
student
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Fang Zhonghao 13 Nov 19, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

âš¡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
Command-line tool for downloading and extending the RedCaps dataset.

RedCaps Downloader This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly dow

RedCaps dataset 33 Dec 14, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022