Personalized Federated Learning using Pytorch (pFedMe)

Overview

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020)

This repository implements all experiments in the paper Personalized Federated Learning with Moreau Envelopes.

Authors: Canh T. Dinh, Nguyen H. Tran, Tuan Dung Nguyen

Full paper: https://arxiv.org/pdf/2006.08848.pdf https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf

Paper has been accepted by NeurIPS 2020.

This repository does not only implement pFedMe but also FedAvg, and Per-FedAvg algorithms. (Federated Learning using Pytorch)

Software requirements:

  • numpy, scipy, torch, Pillow, matplotlib.

  • To download the dependencies: pip3 install -r requirements.txt

Dataset: We use 2 datasets: MNIST and Synthetic

  • To generate non-idd MNIST Data:

    • Access data/Mnist and run: "python3 generate_niid_20users.py"
    • We can change the number of user and number of labels for each user using 2 variable NUM_USERS = 20 and NUM_LABELS = 2
  • To generate idd MNIST Data (we do not use iid data in the paper):

    • Access data/Mnist and run: "python3 generate_iid_20users.py"
  • To generate niid Synthetic:

    • Access data/Synthetic and run: "python3 generate_synthetic_05_05.py". Similar to MNIST data, the Synthetic data is configurable with the number of users and the numbers of labels for each user.
  • The datasets also are available to download at: https://drive.google.com/drive/folders/1-Z3FCZYoisqnIoLLxOljMPmP70t2TGwB?usp=sharing

Produce experiments and figures

  • There is a main file "main.py" which allows running all experiments.

Using same parameters

  • To produce the comparison experiments for pFedMe using MNIST dataset: MNIST

    • Strongly Convex Case, run below commands:
      
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.005 --personal_learning_rate 0.1 --beta 1 --lamda 15 --num_global_iters 800 --local_epochs 20 --algorithm pFedMe --numusers 5 --times 10
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.005 --num_global_iters 800 --local_epochs 20 --algorithm FedAvg --numusers 5  --times 10
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.005 --beta 0.001  --num_global_iters 800 --local_epochs 20 --algorithm PerAvg --numusers 5  --times 10
      
  • It is noted that each algorithm should be run at least 10 times and then the results are averaged.

  • All the train loss, testing accuracy, and training accuracy will be stored as h5py file in the folder "results". It is noted that we store the data for persionalized model and global of pFedMe in 2 separate files following format: DATASET_pFedMe_p_x_x_xu_xb_x_avg.h5 and DATASET_pFedMe_x_x_xu_xb_x_avg.h5 respectively (pFedMe for global model, pFedMe_p for personalized model of pFedMe, PerAvg_p is for personalized model of PerAvg).

  • In order to plot the figure for convex case, set parameters in file main_plot.py similar to parameters run from previous experiments. It is noted that each experiment with different parameters will have different results, the configuration in the plot function should be modified for each specific case. For example. To plot the comparision in convex case for the above experiments, in the main_plot.py set:

    
      numusers = 5
      num_glob_iters = 800
      dataset = "Mnist"
      local_ep = [20,20,20,20]
      lamda = [15,15,15,15]
      learning_rate = [0.005, 0.005, 0.005, 0.005]
      beta =  [1.0, 1.0, 0.001, 1.0]
      batch_size = [20,20,20,20]
      K = [5,5,5,5]
      personal_learning_rate = [0.1,0.1,0.1,0.1]
      algorithms = [ "pFedMe_p","pFedMe","PerAvg_p","FedAvg"]
      plot_summary_one_figure_mnist_Compare(num_users=numusers, loc_ep1=local_ep, Numb_Glob_Iters=num_glob_iters, lamb=lamda,
                                 learning_rate=learning_rate, beta = beta, algorithms_list=algorithms, batch_size=batch_size, dataset=dataset, k = K, personal_learning_rate = personal_learning_rate)
      
    • NonConvex case:
      
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.005 --personal_learning_rate 0.09 --beta 1 --lamda 15 --num_global_iters 800 --local_epochs 20 --algorithm pFedMe --numusers 5 --times 10
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.005 --num_global_iters 800 --local_epochs 20 --algorithm FedAvg --numusers 5 --times 10
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.005 --beta 0.001  --num_global_iters 800 --local_epochs 20 --algorithm PerAvg --numusers 5 --times 10
      
      To plot the figure for non-convex case, we do similar to convex case, also need to change the parameters in main_plot.py.
  • To produce the comparision experiment for pFedMe using Synthetic dataset: SYNTHETIC

    • Strongly Convex Case:

      
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.005 --personal_learning_rate 0.01 --beta 1 --lamda 20 --num_global_iters 600 --local_epochs 20 --algorithm pFedMe --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.005 --num_global_iters 600 --local_epochs 20 --algorithm FedAvg --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.005 --beta 0.001  --num_global_iters 600 --local_epochs 20 --algorithm PerAvg --numusers 10 --times 10
      
    • NonConvex case:

      
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.005 --personal_learning_rate 0.01 --beta 1 --lamda 20 --num_global_iters 600 --local_epochs 20 --algorithm pFedMe --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.005 --num_global_iters 600 --local_epochs 20 --algorithm FedAvg --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.005 --beta 0.001  --num_global_iters 600 --local_epochs 20 --algorithm PerAvg --numusers 10 --times 10
      

Fine-tuned Parameters:

To produce results in the table of fine-tune parameter:

  • MNIST:

    • Strongly Convex Case:

      
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.01 --personal_learning_rate 0.1 --beta 2 --lamda 15 --num_global_iters 800 --local_epochs 20 --algorithm pFedMe --numusers 5 --times 10
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.02 --num_global_iters 800 --local_epochs 20 --algorithm FedAvg --numusers 5 --times 10
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.03 --beta 0.003  --num_global_iters 800 --local_epochs 20 --algorithm PerAvg --numusers 5 --times 10
      
    • NonConvex Case:

      
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.01 --personal_learning_rate 0.05 --beta 2 --lamda 30 --num_global_iters 800 --local_epochs 20 --algorithm pFedMe --numusers 5 --times 10
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.02 --num_global_iters 800 --local_epochs 20 --algorithm FedAvg --numusers 5 --times 10
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.02 --beta 0.001  --num_global_iters 800 --local_epochs 20 --algorithm PerAvg --numusers 5 --times 10
      
  • Sythetic:

    • Strongly Convex Case:

      
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.01 --personal_learning_rate 0.01 --beta 2 --lamda 20 --num_global_iters 600 --local_epochs 20 --algorithm pFedMe --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.02 --num_global_iters 600 --local_epochs 20 --algorithm FedAvg --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.02 --beta 0.002  --num_global_iters 600 --local_epochs 20 --algorithm PerAvg --numusers 10 --times 10
      
    • NonConvex Case:

      
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.01 --personal_learning_rate 0.01 --beta 2 --lamda 30 --num_global_iters 600 --local_epochs 20 --algorithm pFedMe --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.03 --num_global_iters 600 --local_epochs 20 --algorithm FedAvg --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.01 --beta 0.001  --num_global_iters 600 --local_epochs 20 --algorithm PerAvg --numusers 10 --times 10
      

Effect of hyper-parameters:

For all the figures for effect of hyper-parameters, we use Mnist dataset and fix the learning_rate == 0.005 and personal_learning_rate == 0.09 for all experiments. Other parameters are changed according to the experiments. Only in the experiments for the effects of $\beta$, in case $\beta = 4$, we use learning_rate == 0.003 to stable the algorithm.

CIFAR-10 dataset:

The implementation of Cifar10 has been finished. However, we haven't fine-tuned the parameters for all algorithms on Cifar10. Below is the comment to run cifar10 on pFedMe.


python3 main.py --dataset Cifar10 --model cnn --batch_size 20 --learning_rate 0.01 --personal_learning_rate 0.01 --beta 1 --lamda 15 --num_global_iters 800 --local_epochs 20 --algorithm pFedMe --numusers 5 
Owner
Charlie Dinh
Ph.D. Candidate at the University of Sydney, Australia. Master of Data Science at Grenoble INP, France.
Charlie Dinh
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022