Visualization Website by using Dash and Heroku

Overview

Visualization Website by using Dash and Heroku

You can visit the website https://payroll-expense-analysis.herokuapp.com/

In this project, I am interested in studying the top 10 departments with the highest total payroll expense in each county in Massachusetts in 2020. The link to this dashboard is:

Dashboard Description

Users can click on one or multiple counties to study the departments with the highest total payroll expenses in the state of Massachusetts. Moreover, the pie chart would allow us to compare the proportion of total payroll earnings across the selected counties. By using the checkbox interactive element, users could also generate the range of counties they want to study the top 10 departments with the highest payroll expense among the selected counties. Users who are interested in discovering high payroll expense on the department and county level could utilize this dashboard as an initial observation to generate idea for further research directions.

Dashboard elements:

The dropdown box is an interactive element where the users have the option to choose the counties they are interested in. It will generate a bar plot that reflects the sum of total earnings on the Y-axis, the top 10 department names with the highest pay in the county on the x-axis. The check box element creates an interactive platform for users to compare the percentage of total earnings across counties. For example, if we choose Suffolk and Middlesex as the base of our analysis, then we can see that Suffolk is 86.9 percent compared to the sum of Suffolk and Middlesex. If we had chosen all counties, we would be able to see how much funds were dedicated to the city employee payroll in each county across the state of Massachusetts. The check box element also generates a table of the top departments with the most payroll spendings within the selected counties.

Data Sources

The data collected from:

the City of Boston: The City of Boston US geo data: US geo data

The original dataset contained the following columns:

Name: The name of the city employee Department Name: The name of the department the employee work at Title: The title or position the individual has in the respective department Postal: The postal code of where the payroll is expensed

The definition the payroll component rest of the variables is provided by the City of Boston:

Definition

The other dataset we had used is from "http://download.geonames.org/export/zip/US.zip"

This data is a txt. List that contains geographic information of each postal code, including the state, statecode, city, county, longitude, latitude, etc. I transformed this list into a dataset. This dataset would be merged with our payroll 2020 dataset to locate each payroll’s county.

Data Cleaning Process:

The first step is to input the original payroll data and the US geo data from the website. Then, I eliminated the rows in the payroll data where postal code is null. Furthermore, I selected only the department name, total earnings, and the county columns to use as the dashboard data source. In addition. I eliminated the rows that is not within the State of Massachusetts. For the bar plot and table, I sorted the data through grouping the dataset by department name and county and summarizing the total earnings for each respective group. For the pie chart, I will sort the data by grouping the dataset solely by county and summarize the total earnings.

##Additional Comments

It is interesting to discover that the Boston Police Department is the highest across all departments. I think it is worth the future investigation for more detailed understanding of the payroll components.

Payroll-Expense

Owner
YF Liu
YF Liu
A workshop on data visualization in Python with notebooks and exercises for following along.

Beyond the Basics: Data Visualization in Python The human brain excels at finding patterns in visual representations, which is why data visualizations

Stefanie Molin 162 Dec 05, 2022
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。

COVID-19-Epidemic-Map 基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。 觉得项目还不错的话欢迎给一个star! 项目的源码可以正常运行,各个库的版本、数据库的建表语句、运行过程中遇到的坑以及解决方式在笔记.md中都

31 Dec 15, 2022
nptsne is a numpy compatible python binary package that offers a number of APIs for fast tSNE calculation.

nptsne nptsne is a numpy compatible python binary package that offers a number of APIs for fast tSNE calculation and HSNE modelling. For more detail s

Biomedical Visual Analytics Unit LUMC - TU Delft 29 Jul 05, 2022
Plot, scatter plots and histograms in the terminal using braille dots

Plot, scatter plots and histograms in the terminal using braille dots, with (almost) no dependancies. Plot with color or make complex figures - similar to a very small sibling to matplotlib. Or use t

Tammo Ippen 207 Dec 30, 2022
Simple Python interface for Graphviz

Simple Python interface for Graphviz

Sebastian Bank 1.3k Dec 26, 2022
Python Data Validation for Humans™.

validators Python data validation for Humans. Python has all kinds of data validation tools, but every one of them seems to require defining a schema

Konsta Vesterinen 670 Jan 09, 2023
A simple code for plotting figure, colorbar, and cropping with python

Python Plotting Tools This repository provides a python code to generate figures (e.g., curves and barcharts) that can be used in the paper to show th

Guanying Chen 134 Jan 02, 2023
Make your BSC transaction simple.

bsc_trade_history Make your BSC transaction simple. 中文ReadMe Background: inspired by debank ,Practice my hands on this small project Blog:Crypto-BscTr

foolisheddy 7 Jul 06, 2022
MPL Plotter is a Matplotlib based Python plotting library built with the goal of delivering publication-quality plots concisely.

MPL Plotter is a Matplotlib based Python plotting library built with the goal of delivering publication-quality plots concisely.

Antonio López Rivera 162 Nov 11, 2022
Here I plotted data for the average test scores across schools and class sizes across school districts.

HW_02 Here I plotted data for the average test scores across schools and class sizes across school districts. Average Test Score by Race This graph re

7 Oct 27, 2021
A Python library created to assist programmers with complex mathematical functions

libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Small project demonstrating the use of Grafana and InfluxDB for monitoring the speed of an internet connection

Speedtest monitor for Grafana A small project that allows internet speed monitoring using Grafana, InfluxDB 2 and Speedtest. Demo Requirements Docker

Joshua Ghali 3 Aug 06, 2021
Altair extension for saving charts in a variety of formats.

Altair Saver This packge provides extensions to Altair for saving charts to a variety of output types. Supported output formats are: .json/.vl.json: V

Altair 85 Dec 09, 2022
Mathematical learnings with Lean, for those of us who wish we knew more of both!

Lean for the Inept Mathematician This repository contains source files for a number of articles or posts aimed at explaining bite-sized mathematical c

Julian Berman 8 Feb 14, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
A comprehensive tutorial for plotting focal mechanism

Focal_Mechanisms_Demo A comprehensive tutorial for plotting focal mechanism "beach-balls" using the PyGMT package for Python. (Resulting map of this d

3 Dec 13, 2022
Visualization Website by using Dash and Heroku

Visualization Website by using Dash and Heroku You can visit the website https://payroll-expense-analysis.herokuapp.com/ In this project, I am interes

YF Liu 1 Jan 14, 2022
Numerical methods for ordinary differential equations: Euler, Improved Euler, Runge-Kutta.

Numerical methods Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary

Aleksey Korshuk 5 Apr 29, 2022
Machine learning beginner to Kaggle competitor in 30 days. Non-coders welcome. The program starts Monday, August 2, and lasts four weeks. It's designed for people who want to learn machine learning.

30-Days-of-ML-Kaggle 🔥 About the Hands On Program 💻 Machine learning beginner → Kaggle competitor in 30 days. Non-coders welcome The program starts

Roja Achary 145 Jan 01, 2023