PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Overview

Learning Character-Agnostic Motion for Motion Retargeting in 2D

We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019.

Prerequisites

  • Linux
  • CPU or NVIDIA GPU + CUDA CuDNN
  • Python 3
  • PyTorch 0.4

Getting Started

Installation

  • Clone this repo

    git clone https://github.com/ChrisWu1997/2D-Motion-Retargeting.git
    cd 2D-Motion-Retargeting
  • Install dependencies

    pip install -r requirements.txt

    Note that the imageio package requires ffmepg and there are several options to install ffmepg. For those who are using anaconda, run conda install ffmpeg -c conda-forge is the simplest way.

Run demo examples

We provide pretrained models and several video examples, along with their OpenPose outputs. After run, the results (final joint positions + videos) will be saved in the output folder.

  • Run the full model to combine motion, skeleton, view angle from three input videos:

    python predict.py -n full --model_path ./model/pretrained_full.pth -v1 ./examples/tall_man -v2 ./examples/small_man -v3 ./examples/workout_march -h1 720 -w1 720 -h2 720 -w2 720 -h3 720 -w3 720 -o ./outputs/full-demo --max_length 120

    Results will be saved in ./outputs/full-demo:

  • Run the full model to do interpolation between two input videos. For example, to keep body attribute unchanged, and interpolate in motion and view axis:

    python interpolate.py --model_path ./model/pretrained_full.pth -v1 ./examples/model -v2 ./examples/tall_man -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/interpolate-demo.mp4 --keep_attr body --form matrix --nr_sample 5 --max_length 120

    You will get a matrix of videos that demonstrates the interpolation results:

  • Run two encoder model to transfer motion and skeleton between two input videos:

    python predict.py -n skeleton --model_path ./model/pretrained_skeleton.pth -v1 ./examples/tall_man -v2 ./examples/small_man -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/skeleton-demo --max_length 120
  • Run two encoder model to transfer motion and view angle between two input videos:

    python predict.py -n view --model_path ./model/pretrained_view.pth -v1 ./examples/tall_man -v2 ./examples/model -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/view-demo --max_length 120

Use your own videos

To run our models with your own videos, you first need to use OpenPose to extract the 2D joint positions from the video, then use the resulting JSON files as described in the demo examples.

Train from scratch

Prepare Data

  • Download Mixamo Data

    For the sake of convenience, we pack the Mixamo Data that we use. To download it, see Google Drive or Baidu Drive (8jq3). After downloading, extract it into ./mixamo_data.

    NOTE: Our Mixamo dataset only covers a part of the whole collections provided by the Mixamo website. If you want to collect Mixamo Data by yourself, you can follow the our guide here. The downloaded files are of fbx format, to convert it into json/npy (joints 3d position), you can use our script dataset/fbx2joints3d.py(requires blender 2.79).

  • Preprocess the downloaded data

    python ./dataset/preprocess.py
    

Train

  • Train the full model (with three encoders) on GPU:

    python train.py -n full -g 0
    

    Further more, you can select which structure to train and which loss to use through command line arguments:

    -n : Which structure to train. 'skeleton' / 'view' for 2 encoders system to transfer skeleton/view. 'full' for full system with 3 encoders.

    —disable_triplet: To disable triplet loss. By default, triplet loss is used.

    —use_footvel_loss: To use foot velocity loss.

Citation

If you use this code for your research, please cite our paper:

@article{aberman2019learning,
  author = {Aberman, Kfir and Wu, Rundi and Lischinski, Dani and Chen, Baoquan and Cohen-Or, Daniel},
  title = {Learning Character-Agnostic Motion for Motion Retargeting in 2D},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {38},
  number = {4},
  pages = {75},
  year = {2019},
  publisher = {ACM}
}

Owner
Rundi Wu
PhD student at Columbia University
Rundi Wu
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022