Simple and efficient RevNet-Library with DeepSpeed support

Related tags

Text Data & NLPrevlib
Overview

RevLib

Simple and efficient RevNet-Library with DeepSpeed support

Features

  • Half the constant memory usage and faster than RevNet libraries
  • Less memory than gradient checkpointing (1 * output_size instead of n_layers * output_size)
  • Same speed as activation checkpointing
  • Extensible
  • Trivial code (<100 Lines)

Getting started

Installation

python3 -m pip install revlib

Examples

iRevNet

iRevNet is not only partially reversible but instead a fully-invertible model. The source code looks complex at first glance. It also doesn't use the memory savings it could utilize, as RevNet requires custom AutoGrad functions that are hard to maintain. An iRevNet can be implemented like this using revlib:

import torch
from torch import nn
import revlib

channels = 64
channel_multiplier = 4
depth = 3
classes = 1000


# Create a basic function that's reversibly executed multiple times. (Like f() in ResNet)
def conv(in_channels, out_channels):
    return nn.Conv2d(in_channels, out_channels, (3, 3), padding=1)


def block_conv(in_channels, out_channels):
    return nn.Sequential(conv(in_channels, out_channels),
                         nn.Dropout(0.2),
                         nn.BatchNorm2d(out_channels),
                         nn.ReLU())


def block():
    return nn.Sequential(block_conv(channels, channels * channel_multiplier),
                         block_conv(channels * channel_multiplier, channels),
                         nn.Conv2d(channels, channels, (3, 3), padding=1))


# Create a reversible model. f() is invoked depth-times with different weights.
rev_model = revlib.ReversibleSequential(*[block() for _ in range(depth)])

# Wrap reversible model with non-reversible layers
model = nn.Sequential(conv(3, 2*channels), rev_model, conv(2 * channels, classes))

# Use it like you would a regular PyTorch model
inp = torch.randn((1, 3, 224, 224))
out = model(inp)
out.mean().backward()
assert out.size() == (1, 1000, 224, 224)

MomentumNet

MomentumNet is another recent paper that made significant advancements in the area of memory-efficient networks. They propose to use a momentum stream instead of a second model output as illustrated below: MomentumNetIllustration. Implementing that with revlib requires you to write a custom coupling operation (functional analogue to MemCNN) that merges input and output streams.

import torch
from torch import nn
import revlib

channels = 64
depth = 16
momentum_ema_beta = 0.99


# Compute y2 from x2 and f(x1) by merging x2 and f(x1) in the forward pass.
def momentum_coupling_forward(other_stream: torch.Tensor, fn_out: torch.Tensor) -> torch.Tensor:
    return other_stream * momentum_ema_beta + fn_out * (1 - momentum_ema_beta)


# Calculate x2 from y2 and f(x1) by manually computing the inverse of momentum_coupling_forward.
def momentum_coupling_inverse(output: torch.Tensor, fn_out: torch.Tensor) -> torch.Tensor:
    return (output - fn_out * (1 - momentum_ema_beta)) / momentum_ema_beta


# Pass in coupling functions which will be used instead of x2 + f(x1) and y2 - f(x1)
rev_model = revlib.ReversibleSequential(*[layer for _ in range(depth)
                                          for layer in [nn.Conv2d(channels, channels, (3, 3), padding=1),
                                                        nn.Identity()]],
                                        coupling_forward=[momentum_coupling_forward, revlib.additive_coupling_forward],
                                        coupling_inverse=[momentum_coupling_inverse, revlib.additive_coupling_inverse])

inp = torch.randn((16, channels * 2, 224, 224))
out = rev_model(inp)
assert out.size() == (16, channels * 2, 224, 224)

Reformer

Reformer uses RevNet with chunking and LSH-attention to efficiently train a transformer. Using revlib, standard implementations, such as lucidrains' Reformer, can be improved upon to use less memory. Below we're still using the basic building blocks from lucidrains' code to have a comparable model.

import torch
from torch import nn
from reformer_pytorch.reformer_pytorch import LSHSelfAttention, Chunk, FeedForward, AbsolutePositionalEmbedding
import revlib


class Reformer(torch.nn.Module):
    def __init__(self, sequence_length: int, features: int, depth: int, heads: int, bucket_size: int = 64,
                 lsh_hash_count: int = 8, ff_chunks: int = 16, input_classes: int = 256, output_classes: int = 256):
        super(Reformer, self).__init__()
        self.token_embd = nn.Embedding(input_classes, features * 2)
        self.pos_embd = AbsolutePositionalEmbedding(features * 2, sequence_length)

        self.core = revlib.ReversibleSequential(*[nn.Sequential(nn.LayerNorm(features), layer) for _ in range(depth)
                                                 for layer in
                                                 [LSHSelfAttention(features, heads, bucket_size, lsh_hash_count),
                                                  Chunk(ff_chunks, FeedForward(features, activation=nn.GELU), 
                                                        along_dim=-2)]],
                                                split_dim=-1)
        self.out_norm = nn.LayerNorm(features * 2)
        self.out_linear = nn.Linear(features * 2, output_classes)

    def forward(self, inp: torch.Tensor) -> torch.Tensor:
        return self.out_linear(self.out_norm(self.core(self.token_embd(inp) + self.pos_embd(inp))))


sequence = 1024
classes = 16
model = Reformer(sequence, 256, 6, 8, output_classes=classes)
out = model(torch.ones((16, sequence), dtype=torch.long))
assert out.size() == (16, sequence, classes)

Explanation

Most other RevNet libraries, such as MemCNN and Revtorch calculate both f() and g() in one go, to create one large computation. RevLib, on the other hand, brings Mesh TensorFlow's "reversible half residual and swap" to PyTorch. reversible_half_residual_and_swap computes only one of f() and g() and swaps the inputs and gradients. This way, the library only has to store one output as it can recover the other output during the backward pass.
Following Mesh TensorFlow's example, revlib also uses separate x1 and x2 tensors instead of concatenating and splitting at every step to reduce the cost of memory-bound operations.

RevNet's memory consumption doesn't scale with its depth, so it's significantly more memory-efficient for deep models. One problem in most implementations was that two tensors needed to be stored in the output, quadrupling the required memory. The high memory consumption rendered RevNet nearly useless for small networks, such as BERT, with its six layers.
RevLib works around this problem by storing only one output and two inputs for each forward pass, giving a model as small as BERT a >2x improvement!

Ignoring the dual-path structure of a RevNet, it usually used to be much slower than gradient checkpointing. However, RevLib uses minimal coupling functions and has no overhead between Sequence items, allowing it to train as fast as a comparable model with gradient checkpointing.

Owner
Lucas Nestler
German ai researcher
Lucas Nestler
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXの音声合成エンジン

VOICEVOX ENGINE VOICEVOXの音声合成エンジン。 実態は HTTP サーバーなので、リクエストを送信すればテキスト音声合成できます。 API ドキュメント VOICEVOX ソフトウェアを起動した状態で、ブラウザから

Hiroshiba 3 Jul 05, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
Transcribing audio files using Hugging Face's implementation of Wav2Vec2 + "chain-linking" NLP tasks to combine speech-to-text with downstream tasks like translation and summarisation.

PART 2: CHAIN LINKING AUDIO-TO-TEXT NLP TASKS 2A: TRANSCRIBE-TRANSLATE-SENTIMENT-ANALYSIS In notebook3.0, I demo a simple workflow to: transcribe a lo

Chua Chin Hon 30 Jul 13, 2022
Refactored version of FastSpeech2

Refactored version of FastSpeech2. An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

ILJI CHOI 10 May 26, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the c

Google Research 457 Dec 23, 2022
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 02, 2023
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023
Korea Spell Checker

한국어 문서 koSpellPy Korean Spell checker How to use Install pip install kospellpy Use from kospellpy import spell_init spell_checker = spell_init() # d

kangsukmin 2 Oct 20, 2021
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022