CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

Overview

M-BERT-Study

CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

Motivation

Multilingual BERT (M-BERT) has shown surprising cross lingual abilities --- even when it is trained without cross lingual objectives. In this work, we analyze what causes this multilinguality from three factors: linguistic properties of the languages, the architecture of the model, and the learning objectives.

Results

Linguistic properties:

  • Code switching text (word-piece overlap) is not the main cause of multilinguality.
  • Word ordering is crucial, when words in sentences are randomly permuted, multilinguality is low, however, still significantly better than random.
  • (Unigram) word frequency is not enough, as we resampled all words with the same frequency, and found almost random performance. Combining the second and the third property infers that there is language similarity other than ordering of words between two languages, and which unigram frequency does not capture. We hypothesize that it may be similarity of n-gram occurrences.

Architecture:

  • Depth of the transformer is the most important.
  • Number of attention heads effects the absolute performance on individual languages, but the gap between in-language supervision and cross-language zero-shot learning didn't change much.
  • Total number of parameters, like depth, effects multilinguality.

Learning Objectives:

  • Next Sentence Prediction objective, when removed, leads to slight increase in performance.
  • Even marking sentences in languages with language-ids, allowing BERT to know exactly which language its learning on, did not hurt performance
  • Using word-pieces leads to strong improvements on both source and target language (likely to depend on tasks) and slight improvement cross-lingually comparing to word or character based models.

Please refer to our paper for more details.

Scripts

Creating pre-training data

If you would like to pre-train a BERT with Fake language/permuted sentences, see preprocessing-scripts for how to create the tfrecords for BERT training.

Pre-training BERT

Once you have uploaded the tfrecords to google cloud, you can set up an instance and start BERT training via bert-running-scripts.

Evaluating

With models we provide or just trained, we provide code for evaluating on two tasks, NER and entailment. See evaluating-scripts.

BERT Models

We release the following bert models (in a few days):

  • Word-piece Experiments
  • Word Order Experiments
  • Word Frequency Experiments
  • Model Structure Experiments

See data for detailed paths to download (in a few days).

Requirements

  • allennlp: 0.9.0
  • ccg_nlpy

Citation

Please cite the following paper if you find our paper useful. Thanks!

Karthikeyan K, Zihan Wang, Stephen Mayhew, Dan Roth. "Cross-Lingual Ability of Multilingual BERT: An Empirical Study" arXiv preprint arXiv:1912.07840 (2019).

@article{wang2019cross,
  title={Cross-Lingual Ability of Multilingual BERT: An Empirical Study},
  author={K, Karthikeyan and Wang, Zihan and Mayhew, Stephen and Roth, Dan},
  journal={arXiv preprint arXiv:1912.07840},
  year={2019}
}
Owner
CogComp
Cognitive Computation Group, led by Prof. Dan Roth
CogComp
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022