Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Overview

Learning Generative Models of Textured 3D Meshes from Real-World Images

This is the reference implementation of "Learning Generative Models of Textured 3D Meshes from Real-World Images", accepted at ICCV 2021.

Dario Pavllo, Jonas Kohler, Thomas Hofmann, Aurelien Lucchi. Learning Generative Models of Textured 3D Meshes from Real-World Images. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

This work is a follow-up of Convolutional Generation of Textured 3D Meshes, in which we learn a GAN for generating 3D triangle meshes and the corresponding texture maps using 2D supervision. In this work, we relax the requirement for keypoints in the pose estimation step, and generalize the approach to unannotated collections of images and new categories/datasets such as ImageNet.

Setup

Instructions on how to set up dependencies, datasets, and pretrained models can be found in SETUP.md

Quick start

In order to test our pretrained models, the minimal setup described in SETUP.md is sufficient. No dataset setup is required. We provide an interface for evaluating FID scores, as well as an interface for exporting a sample of generated 3D meshes (both as a grid of renderings and as .obj meshes).

Exporting a sample

You can export a sample of generated meshes using --export-sample. Here are some examples:

python run_generation.py --name pretrained_imagenet_car_singletpl --dataset imagenet_car --gpu_ids 0 --batch_size 10 --export_sample --how_many 40
python run_generation.py --name pretrained_imagenet_airplane_singletpl --dataset imagenet_airplane --gpu_ids 0 --batch_size 10 --export_sample --how_many 40
python run_generation.py --name pretrained_imagenet_elephant_singletpl --dataset imagenet_elephant --gpu_ids 0 --batch_size 10 --export_sample --how_many 40
python run_generation.py --name pretrained_cub_singletpl --dataset cub --gpu_ids 0 --batch_size 10 --export_sample --how_many 40
python run_generation.py --name pretrained_all_singletpl --dataset all --conditional_class --gpu_ids 0 --batch_size 10 --export_sample --how_many 40

This will generate a sample of 40 meshes, render them from random viewpoints, and export the final result to the output directory as a png image. In addition, the script will export the meshes as .obj files (along with material and texture). These can be imported into Blender or other modeling tools. You can switch between the single-template and multi-template settings by appending either _singletpl or _multitpl to the experiment name.

Evaluating FID on pretrained models

You can evaluate the FID of a model by specifying --evaluate. For the models trained to generate a single category (setting A):

python run_generation.py --name pretrained_cub_singletpl --dataset cub --gpu_ids 0,1,2,3 --batch_size 64 --evaluate
python run_generation.py --name pretrained_p3d_car_singletpl --dataset p3d_car --gpu_ids 0,1,2,3 --batch_size 64 --evaluate
python run_generation.py --name pretrained_imagenet_zebra --dataset imagenet_zebra_singletpl --gpu_ids 0,1,2,3 --batch_size 64 --evaluate

For the conditional models trained to generate all classes (setting B), you can specify the category to evaluate (e.g. motorcycle):

python run_generation.py --name pretrained_all_singletpl --dataset all --conditional_class --gpu_ids 0,1,2,3 --batch_size 64 --evaluate --filter_class motorcycle

As before, you can switch between the single-template and multi-template settings by appending either _singletpl or _multitpl to the experiment name. You can of course also adjust the number of GPUs and batch size to suit your computational resources. For evaluation, 16 elements per GPU is a sensible choice. You can also tune the number of data-loading threads using the --num_workers argument (default: 4 threads). Note that the FID will exhibit a small variance depending on the chosen batch size.

Training

See TRAINING.md for the instructions on how to generate the pseudo-ground-truth dataset and train a new model from scratch. The documentation also provides instructions on how to run the pose estimation steps and run the pipeline from scratch on a custom dataset.

Citation

If you use this work in your research, please consider citing our paper(s):

@inproceedings{pavllo2021textured3dgan,
  title={Learning Generative Models of Textured 3D Meshes from Real-World Images},
  author={Pavllo, Dario and Kohler, Jonas and Hofmann, Thomas and Lucchi, Aurelien},
  booktitle={IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

@inproceedings{pavllo2020convmesh,
  title={Convolutional Generation of Textured 3D Meshes},
  author={Pavllo, Dario and Spinks, Graham and Hofmann, Thomas and Moens, Marie-Francine and Lucchi, Aurelien},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2020}
}

License and Acknowledgments

Our work is licensed under the MIT license. For more details, see LICENSE. This repository builds upon convmesh and includes third-party libraries which may be subject to their respective licenses: Synchronized-BatchNorm-PyTorch, the data loader from CMR, and FID evaluation code from pytorch-fid.

Comments
  • CVE-2007-4559 Patch

    CVE-2007-4559 Patch

    Patching CVE-2007-4559

    Hi, we are security researchers from the Advanced Research Center at Trellix. We have began a campaign to patch a widespread bug named CVE-2007-4559. CVE-2007-4559 is a 15 year old bug in the Python tarfile package. By using extract() or extractall() on a tarfile object without sanitizing input, a maliciously crafted .tar file could perform a directory path traversal attack. We found at least one unsantized extractall() in your codebase and are providing a patch for you via pull request. The patch essentially checks to see if all tarfile members will be extracted safely and throws an exception otherwise. We encourage you to use this patch or your own solution to secure against CVE-2007-4559. Further technical information about the vulnerability can be found in this blog.

    If you have further questions you may contact us through this projects lead researcher Kasimir Schulz.

    opened by TrellixVulnTeam 0
  • how to test with the picture

    how to test with the picture

    I am very appreciated with your work.But I am wondering how can I test with my own picture. For example,I input an image of a car,and directly get the .obj and .png

    opened by lisentao 1
  • caffe2 error for detectron

    caffe2 error for detectron

    Hi,

    I am trying to test the code on a custom dataset. I downloaded seg_every_thing in the root, copied detections_vg3k.py to tools of the former. Built detectron from scratch, but still it gives me: AssertionError: Detectron ops lib not found; make sure that your Caffe2 version includes Detectron module There is no make file in the Ops lib of detectron. How can I fix this?

    opened by sinAshish 2
  • Person mesh and reconstruction reconstructing texture

    Person mesh and reconstruction reconstructing texture

    Thanks for your great work ... Wanna work on person class to create mesh as well as corresponding texture. can you refer dataset and steps to reach out..?

    opened by sharoseali 0
  • training on custom dataset

    training on custom dataset

    Thank you for your great work! currently, I'm following your work and trying to train on custom datasets. When I move on the data preparation part, I found the model weights in seg_every_thing repo are no long avaiable. I wonder is it possible for you to share the weights ('lib/datasets/data/trained_models/33219850_model_final_coco2vg3k_seg.pkl') used in tools/detection_tool_vg3k.py with us? Looking forward to your reply! Thanks~

    opened by pingping-lu 1
Releases(v1.0)
Owner
Dario Pavllo
PhD Student @ ETH Zurich
Dario Pavllo
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022