DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

Overview

DeepMetaHandles (CVPR2021 Oral)

[paper] [animations]

DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given shape. The disentangled meta-handles factorize all the plausible deformations of the shape, while each of them corresponds to an intuitive deformation direction. A new deformation can then be generated by the "linear combination" of the meta-handles. Although the approach is learned in an unsupervised manner, the learned meta-handles possess strong interpretability and consistency.

Environment setup

  1. Create a conda environment by conda env create -f environment.yml.
  2. Build and install torch-batch-svd.

Demo

  1. Download data/demo and checkpoints/chair_15.pth from here and place them in the corresponding folder. Pre-processed demo data contains the manifold mesh, sampled control point, sampled surface point cloud, and corresponding biharmonic coordinates.
  2. Run src/demo_target_driven_deform.py to deform a source shape to match a target shape.
  3. Run src/demo_meta_handle.py to generate deformations along the direction of each learned meta-handle.

Train

  1. Download data/chair from here and place them in the corresponding folder.
  2. Run the visdom server. (We use visdom to visualize the training process.)
  3. Run src/train.py to start training.

Note: For different categories, you may need to adjust the number of meta-handles. Also, you need to tune the weights for the loss functions. Different sets of weights may produce significantly different results.

Pre-process your own data

  1. Compile codes in data_preprocessing/.
  2. Build and run manifold to convert your meshes into watertight manifolds.
  3. Run data_preprocessing/normalize_bin to normalize the manifold into a unit bounding sphere.
  4. Build and run fTetWild to convert your manifolds into tetrahedral meshes. Please use --output xxx.mesh option to generate the .mesh format tet mesh. Also, you will get a xxx.mesh__sf.obj for the surface mesh. We will use xxx.mesh and xxx.mesh__sf.obj to calculate the biharmonic weights. We will only deform xxx.mesh__sf.obj later.
  5. Run data_preprocessing/sample_key_points_bin to sample control points from xxx.mesh__sf.obj. We use the FPS algorithm over edge distances to sample the control points.
  6. Run data_preprocessing/calc_weight_bin to calculate the bihrnomic weights. It takes xxx.mesh, xxx.mesh__sf.obj, and the control point file as input, and will output a text file containing the weight matrix for the vertices in xxx.mesh__sf.obj.
  7. Run data_preprocessing/sample_surface_points_bin to sample points on the xxx.mesh__sf.obj and calculate the corresponding biharmonic weights for the sampled point cloud.
  8. In our training, we remove those shapes (about 10%) whose biharmonic weight matrix contains elements that are smaller than -1.5 or greater than 1.5. We find that this can help us to converge faster.
  9. To reduce IO time during training, you may compress the data into a compact form and load them to the memory.

Citation

If you find our work useful, please consider citing our paper:

@article{liu2021deepmetahandles,
  title={DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates},
  author={Liu, Minghua and Sung, Minhyuk and Mech, Radomir and Su, Hao},
  journal={arXiv preprint arXiv:2102.09105},
  year={2021}
}
Owner
Liu Minghua
Liu Minghua
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Pose Detection and Machine Learning for real-time body posture analysis during exercise to provide audiovisual feedback on improvement of form.

Posture: Pose Tracking and Machine Learning for prescribing corrective suggestions to improve posture and form while exercising. This repository conta

Pratham Mehta 10 Nov 11, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022