My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Overview

Deep Q&A

Join the chat at https://gitter.im/chatbot-pilots/DeepQA

Table of Contents

Presentation

This work tries to reproduce the results of A Neural Conversational Model (aka the Google chatbot). It uses a RNN (seq2seq model) for sentence predictions. It is done using python and TensorFlow.

The loading corpus part of the program is inspired by the Torch neuralconvo from macournoyer.

For now, DeepQA support the following dialog corpus:

To speedup the training, it's also possible to use pre-trained word embeddings (thanks to Eschnou). More info here.

Installation

The program requires the following dependencies (easy to install using pip: pip3 install -r requirements.txt):

  • python 3.5
  • tensorflow (tested with v1.0)
  • numpy
  • CUDA (for using GPU)
  • nltk (natural language toolkit for tokenized the sentences)
  • tqdm (for the nice progression bars)

You might also need to download additional data to make nltk work.

python3 -m nltk.downloader punkt

The Cornell dataset is already included. For the other datasets, look at the readme files into their respective folders (inside data/).

The web interface requires some additional packages:

  • django (tested with 1.10)
  • channels
  • Redis (see here)
  • asgi_redis (at least 1.0)

A Docker installation is also available. More detailed instructions here.

Running

Chatbot

To train the model, simply run main.py. Once trained, you can test the results with main.py --test (results generated in 'save/model/samples_predictions.txt') or main.py --test interactive (more fun).

Here are some flags which could be useful. For more help and options, use python main.py -h:

  • --modelTag <name>: allow to give a name to the current model to differentiate between them when testing/training.
  • --keepAll: use this flag when training if when testing, you want to see the predictions at different steps (it can be interesting to see the program changes its name and age as the training progress). Warning: It can quickly take a lot of storage space if you don't increase the --saveEvery option.
  • --filterVocab 20 or --vocabularySize 30000: Limit the vocabulary size to and optimize the performances and memory usage. Replace the words used less than 20 times by the <unknown> token and set a maximum vocabulary size.
  • --verbose: when testing, will print the sentences as they are computed.
  • --playDataset: show some dialogue samples from the dataset (can be use conjointly with --createDataset if this is the only action you want to perform).

To visualize the computational graph and the cost with TensorBoard, just run tensorboard --logdir save/.

By default, the network architecture is a standard encoder/decoder with two LSTM layers (hidden size of 256) and an embedding size for the vocabulary of 32. The network is trained using ADAM. The maximum sentence length is set to 10 words, but can be increased.

Web interface

Once trained, it's possible to chat with it using a more user friendly interface. The server will look at the model copied to save/model-server/model.ckpt. The first time you want to use it, you'll need to configure it with:

export CHATBOT_SECRET_KEY="my-secret-key"
cd chatbot_website/
python manage.py makemigrations
python manage.py migrate

Then, to launch the server locally, use the following commands:

cd chatbot_website/
redis-server &  # Launch Redis in background
python manage.py runserver

After launch, the interface should be available on http://localhost:8000/. If you want to deploy the program on a server, use python manage.py runserver 0.0.0.0 instead. More info here.

Chatbot web interface

Results

Surprisingly, it's possible to get some results after only 1 or 2 hours of training (on a GeForce GT 740M), by drastically reducing the input sequence to 5 words and output to 3 (plus the go and eos tokens) and by using a small embedding size (something like 25). Since then I modified the code and now the output length has to match the input one but you can still reproduce the original results, using this version. Of course, the network won't be really chatty:

Q: Hi
A: Hi.

Q: What is your name ?
A: Laura.

Q: What does that mean ?
A: I dunno.

Q: How old are you ?
A: thirty-five.

Q: Will Google hire me ?
A: No.

Q: Tell me the alphabet
A: Fuck you.

Q: That's not nice
A: Yeah.

Here is some case where it fails:

Q: Who is Laura ?
A: My brother.

Q: Say 'goodbye'
A: Alright.

Q: What is cooking ?
A: A channel.

Q: Can you say no ?
A: No.

Q: Two plus two
A: Manny...

With longer sentences, the network is much slower to train. After 250000 iterations with maxLength=10, the network still mainly gives evasive answers (by answering most of the open ended questions by 'I don't know') but it seems to have integrated some basic semantic:

Q: When are the fireworks ?
A: Tomorrow.

Q: What color ?
A: Gray.

Q: Which apple ?
A: That's the first one.

Q: What time is it ?
A: Eleven o'clock.

Q: Who is Skywalker ?
A: She's a freelance bio-exorcist.

Q: Who is John ?
A: The old man.

Q: Who is Jenny ?
A: The man who killed herself.

Q: When were you born ?
A: Soon.

As shown on the last questions, the network still does some confusion between the genders and the present/future. I also tried some deeper philosophical questions with more or less success.

Q: What is the purpose of being intelligent ?
A: The man are obsolete.

Q: What is immoral ?
A: The truth.

Q: What is morality ?
A: The worst.

Q: What is the purpose of existence ?
A: It 's private.

Q: What happens if machines can think ?
A: I think I'll just lie with you.

The model I trained is quite limited by the embedding size I put and by its size, and by the training corpus size. Its 'thought vector' is also probably too small to answer the kind of following:

Q: My name is David. What is my name ?
A: Debbie.

Q: My name is John. What is my name ?
A: Carl Smith.

Q: How many legs does a cat have ?
A: Four.

Q: How many legs does a spider have ?
A: Four.

Q: Do you prefer football or soccer ?
A: Whiskey.

It also seems to overfit as sometimes it will just pop out sentences from its training set unrelated to the question. Adding some dropout should reduce the issue.

Q: I play tennis. What do I play ?
A: I'm going to get laid.

Q: What color is the sky ?
A: One of the deputies is everywhere.

Pretrained model

You can find a pre-trained model here, trained of the default corpus. To use it:

  1. Extract the zip file inside DeepQA/save/
  2. Copy the preprocessed dataset from save/model-pretrainedv2/dataset-cornell-old-lenght10-filter0-vocabSize0.pkl to data/samples/.
  3. Run ./main.py --modelTag pretrainedv2 --test interactive.

Thanks to Nicholas C., here (original) are some additional pre-trained models (compatible with TF 1.2) for diverse datasets. The folder also contains the pre-processed dataset for Cornell, OpenSubtitles, Ubuntu and Scotus (to move inside data/samples/). Those are required is you don't want to process the datasets yourself.

If you have a high-end GPU, don't hesitate to play with the hyper-parameters/corpus to train a better model. From my experiments, it seems that the learning rate and dropout rate have the most impact on the results. Also if you want to share your models, don't hesitate to contact me and I'll add it here.

Improvements

In addition to trying larger/deeper model, there are a lot of small improvements which could be tested. Don't hesitate to send a pull request if you implement one of those. Here are some ideas:

  • For now, the predictions are deterministic (the network just take the most likely output) so when answering a question, the network will always gives the same answer. By adding a sampling mechanism, the network could give more diverse (and maybe more interesting) answers. The easiest way to do that is to sample the next predicted word from the SoftMax probability distribution. By combining that with the loop_function argument of tf.nn.seq2seq.rnn_decoder, it shouldn't be too difficult to add. After that, it should be possible to play with the SoftMax temperature to get more conservative or exotic predictions.
  • Adding attention could potentially improve the predictions, especially for longer sentences. It should be straightforward by replacing embedding_rnn_seq2seq by embedding_attention_seq2seq on model.py.
  • Having more data usually don't hurt. Training on a bigger corpus should be beneficial. Reddit comments dataset seems the biggest for now (and is too big for this program to support it). Another trick to artificially increase the dataset size when creating the corpus could be to split the sentences of each training sample (ex: from the sample Q:Sentence 1. Sentence 2. => A:Sentence X. Sentence Y. we could generate 3 new samples: Q:Sentence 1. Sentence 2. => A:Sentence X., Q:Sentence 2. => A:Sentence X. Sentence Y. and Q:Sentence 2. => A:Sentence X.. Warning: other combinations like Q:Sentence 1. => A:Sentence X. won't work because it would break the transition 2 => X which links the question to the answer)
  • The testing curve should really be monitored as done in my other music generation project. This would greatly help to see the impact of dropout on overfitting. For now it's just done empirically by manually checking the testing prediction at different training steps.
  • For now, the questions are independent from each other. To link questions together, a straightforward way would be to feed all previous questions and answer to the encoder before giving the answer. Some caching could be done on the final encoder stated to avoid recomputing it each time. To improve the accuracy, the network should be retrain on entire dialogues instead of just individual QA. Also when feeding the previous dialogue to the encoder, new tokens <Q> and <A> could be added so the encoder knows when the interlocutor is changing. I'm not sure though that the simple seq2seq model would be sufficient to capture long term dependencies between sentences. Adding a bucket system to group similar input lengths together could greatly improve training speed.
Owner
Conchylicultor
Research Engineer
Conchylicultor
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Nicholas Lee 3 Jan 09, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022