PyTorch Implementation for Deep Metric Learning Pipelines

Overview

Easily Extendable Basic Deep Metric Learning Pipeline

Karsten Roth ([email protected]), Biagio Brattoli ([email protected])

When using this repo in any academic work, please provide a reference to

@misc{roth2020revisiting,
    title={Revisiting Training Strategies and Generalization Performance in Deep Metric Learning},
    author={Karsten Roth and Timo Milbich and Samarth Sinha and Prateek Gupta and Björn Ommer and Joseph Paul Cohen},
    year={2020},
    eprint={2002.08473},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Based on an extendend version of this repo, we have created a thorough comparison and evaluation of Deep Metric Learning:

https://arxiv.org/abs/2002.08473

The newly released code can be found here: https://github.com/Confusezius/Revisiting_Deep_Metric_Learning_PyTorch

It contains more criteria, miner, metrics and logging options!


For usage, go to section 3 - for results to section 4

1. Overview

This repository contains a full, easily extendable pipeline to test and implement current and new deep metric learning methods. For referencing and testing, this repo contains implementations/dataloaders for:

Loss Functions

Sampling Methods

Datasets

Architectures

NOTE: PKU Vehicle-ID is (optional) because there is no direct way to download the dataset, as it requires special licensing. However, if this dataset becomes available (in the structure shown in part 2.2), it can be used directly.


1.1 Related Repos:


2. Repo & Dataset Structure

2.1 Repo Structure

Repository
│   ### General Files
│   README.md
│   requirements.txt    
│   installer.sh
|
|   ### Main Scripts
|   Standard_Training.py     (main training script)
|   losses.py   (collection of loss and sampling impl.)
│   datasets.py (dataloaders for all datasets)
│   
│   ### Utility scripts
|   auxiliaries.py  (set of useful utilities)
|   evaluate.py     (set of evaluation functions)
│   
│   ### Network Scripts
|   netlib.py       (contains impl. for ResNet50)
|   googlenet.py    (contains impl. for GoogLeNet)
│   
│   
└───Training Results (generated during Training)
|    │   e.g. cub200/Training_Run_Name
|    │   e.g. cars196/Training_Run_Name
|
│   
└───Datasets (should be added, if one does not want to set paths)
|    │   cub200
|    │   cars196
|    │   online_products
|    │   in-shop
|    │   vehicle_id

2.2 Dataset Structures

CUB200-2011/CARS196

cub200/cars196
└───images
|    └───001.Black_footed_Albatross
|           │   Black_Footed_Albatross_0001_796111
|           │   ...
|    ...

Online Products

online_products
└───images
|    └───bicycle_final
|           │   111085122871_0.jpg
|    ...
|
└───Info_Files
|    │   bicycle.txt
|    │   ...

In-Shop Clothes

in-shop
└─img
|    └─MEN
|         └─Denim
|               └─id_00000080
|                  │   01_1_front.jpg
|                  │   ...
|               ...
|         ...
|    ...
|
└─Eval
|  │   list_eval_partition.txt

PKU Vehicle ID

vehicle_id
└───image
|     │   <img>.jpg
|     |   ...
|     
└───train_test_split
|     |   test_list_800.txt
|     |   ...

3. Using the Pipeline

[1.] Requirements

The pipeline is build around Python3 (i.e. by installing Miniconda https://conda.io/miniconda.html') and Pytorch 1.0.0/1. It has been tested around cuda 8 and cuda 9.

To install the required libraries, either directly check requirements.txt or create a conda environment:

conda create -n <Env_Name> python=3.6

Activate it

conda activate <Env_Name>

and run

bash installer.sh

Note that for kMeans- and Nearest Neighbour Computation, the library faiss is used, which can allow to move these computations to GPU if speed is desired. However, in most cases, faiss is fast enough s.t. the computation of evaluation metrics is no bottleneck.
NOTE: If one wishes not to use faiss but standard sklearn, simply use auxiliaries_nofaiss.py to replace auxiliaries.py when importing the libraries.

[2.] Exemplary Runs

The main script is Standard_Training.py. If running without input arguments, training of ResNet50 on CUB200-2011 with Marginloss and Distance-sampling is performed.
Otherwise, the following flags suffice to train with different losses, sampling methods, architectures and datasets:

python Standard_Training.py --dataset <dataset> --loss <loss> --sampling <sampling> --arch <arch> --k_vals <k_vals> --embed_dim <embed_dim>

The following flags are available:

  • <dataset> <- cub200, cars196, online_products, in-shop, vehicle_id
  • <loss> <- marginloss, triplet, npair, proxynca
  • <sampling> <- distance, semihard, random, npair
  • <arch> <- resnet50, googlenet
  • <k_vals> <- List of Recall @ k values to evaluate on, e.g. 1 2 4 8
  • <embed_dim> <- Network embedding dimension. Default: 128 for ResNet50, 512 for GoogLeNet.

For all other training-specific arguments (e.g. batch-size, num. training epochs., ...), simply refer to the input arguments in Standard_Training.py.

NOTE: If one wishes to use a different learning rate for the final linear embedding layer, the flag --fc_lr_mul needs to be set to a value other than zero (i.e. 10 as is done in various implementations).

Finally, to decide the GPU to use and the name of the training folder in which network weights, sample recoveries and metrics are stored, set:

python Standard_Training.py --gpu <gpu_id> --savename <name_of_training_run>

If --savename is not set, a default name based on the starting date will be chosen.

If one wishes to simply use standard parameters and wants to get close to literature results (more or less, depends on seeds and overall training scheduling), refer to sample_training_runs.sh, which contains a list of executable one-liners.

[3.] Implementation Notes regarding Extendability:

To extend or test other sampling or loss methods, simply do:

For Batch-based Sampling:
In losses.py, add the sampling method, which should act on a batch (and the resp. set of labels), e.g.:

def new_sampling(self, batch, label, **additional_parameters): ...

This function should, if it needs to run with existing losses, a list of tuples containing indexes with respect to the batch, e.g. for sampling methods returning triplets:

return [(anchor_idx, positive_idx, negative_idx) for anchor_idx, positive_idx, negative_idx in zip(anchor_idxs, positive_idxs, negative_idxs)]

Also, don't forget to add a handle in Sampler.__init__().

For Data-specific Sampling:
To influence the data samples used to generate the batches, in datasets.py edit BaseTripletDataset.

For New Loss Functions:
Simply add a new class inheriting from torch.nn.Module. Refer to other loss variants to see how to do so. In general, include an instance of the Sampler-class, which will provide sampled data tuples during a forward()-pass, by calling self.sampler_instance.give(batch, labels, **additional_parameters).
Finally, include the loss function in the loss_select()-function. Parameters can be passed through the dictionary-notation (see other examples) and if learnable parameters are added, include them in the to_optim-list.

[4.] Stored Data:

By default, the following files are saved:

Name_of_Training_Run
|  checkpoint.pth.tar   -> Contains network state-dict.
|  hypa.pkl             -> Contains all network parameters as pickle.
|                          Can be used directly to recreate the network.
| log_train_Base.csv    -> Logged training data as CSV.                      
| log_val_Base.csv      -> Logged test metrics as CSV.                    
| Parameter_Info.txt    -> All Parameters stored as readable text-file.
| InfoPlot_Base.svg     -> Graphical summary of training/testing metrics progression.
| sample_recoveries.png -> Sample recoveries for best validation weights.
|                          Acts as a sanity test.

Sample Recoveries Note: Red denotes query images, while green show the resp. nearest neighbours.

Sample Recoveries Note: The header in the summary plot shows the best testing metrics over the whole run.

[5.] Additional Notes:

To finalize, several flags might be of interest when examining the respective runs:

--dist_measure: If set, the ratio of mean intraclass-distances over mean interclass distances
                (by measure of center-of-mass distances) is computed after each epoch and stored/plotted.
--grad_measure: If set, the average (absolute) gradients from the embedding layer to the last
                conv. layer are stored in a Pickle-File. This can be used to examine the change of features during each iteration.

For more details, refer to the respective classes in auxiliaries.py.


4. Results

These results are supposed to be performance estimates achieved by running the respective commands in sample_training_runs.sh. Note that the learning rate scheduling might not be fully optimised, so these values should only serve as reference/expectation, not what can be ultimately achieved with more tweaking.

Note also that there is a not insignificant dependency on the used seed.

CUB200

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 2 -- 4 -- 8
ResNet50 Margin/Distance 68.2 38.7 63.4 -- 74.9 -- 86.0 -- 90.4
ResNet50 Triplet/Softhard 66.2 35.5 61.2 -- 73.2 -- 82.4 -- 89.5
ResNet50 NPair/None 65.4 33.8 59.0 -- 71.3 -- 81.1 -- 88.8
ResNet50 ProxyNCA/None 68.1 38.1 64.0 -- 75.4 -- 84.2 -- 90.5

Cars196

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 2 -- 4 -- 8
ResNet50 Margin/Distance 67.2 37.6 79.3 -- 87.1 -- 92.1 -- 95.4
ResNet50 Triplet/Softhard 64.4 32.4 75.4 -- 84.2 -- 90.1 -- 94.1
ResNet50 NPair/None 62.3 30.1 69.5 -- 80.2 -- 87.3 -- 92.1
ResNet50 ProxyNCA/None 66.3 35.8 80.0 -- 87.2 -- 91.8 -- 95.1

Online Products

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 10 -- 100 -- 1000
ResNet50 Margin/Distance 89.6 34.9 76.1 -- 88.7 -- 95.1 -- 98.3
ResNet50 Triplet/Softhard 89.1 33.7 74.3 -- 87.6 -- 94.9 -- 98.5
ResNet50 NPair/None 88.8 31.1 70.9 -- 85.2 -- 93.8 -- 98.2

In-Shop Clothes

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 10 -- 20 -- 30 -- 50
ResNet50 Margin/Distance 88.2 27.7 84.5 -- 96.1 -- 97.4 -- 97.9 -- 98.5
ResNet50 Triplet/Semihard 89.0 30.8 83.9 -- 96.3 -- 97.6 -- 98.4 -- 98.8
ResNet50 NPair/None 88.0 27.6 80.9 -- 95.0 -- 96.6 -- 97.5 -- 98.2

NOTE:

  1. Regarding Vehicle-ID: Due to the number of test sets, size of the training set and little public accessibility, results are not included for the time being.
  2. Regarding ProxyNCA for Online Products and In-Shop Clothes: Due to the high number of classes, the number of proxies required is too high for useful training (>10000 proxies).

ToDO:

  • Fix Version in requirements.txt
  • Add Results for Implementations
  • Finalize Comments
  • Add Inception-BN
  • Add Lifted Structure Loss
Owner
Karsten Roth
PhD (IMPRS-IS, ELLIS) EML Tuebingen | prev. @VectorInstitute, @mila-iqia and @aws.
Karsten Roth
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022