Python code for loading the Aschaffenburg Pose Dataset.

Overview

Aschaffenburg Pose Dataset (APD) DOI

This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and a description can be found at Zenodo. It contains trajectories as well as body poses of pedestrians and cyclists in road traffic recorded in Aschaffenburg, Germany. It is appropriate for training and testing methods for trajectory forecasting and intention prediction of vulnerable road users (VRUs) based on the past trajectory and body poses.

The body posture of the pedestrians and cyclists is available in the form of 2D and 3D poses. The 2D poses contain joint positions in an image coordinate system, while the 3D poses contain actual three-dimensional positions. The joints of the poses are shown in the picture below. The left skeleton shows the joints of the 2D poses and the right one shows the joints of the 3D poses. A detailed description and evaluation of the pose estimation method can be found in [1]. In addition to the trajectories and the poses, manually created labels of the respective motion states are included.

Usage

First download the dataset here and unzip the file. The actual Python module for loading and filtering the dataset can be found in the folder APD. In examples you find the example of how to use the code (plot_trajectories.py). The example loads the dataset from the provided path and plots the smoothed head trajectories in 2D from a bird's eye view (the poses are not visualized here). The trajectories can be filtered by VRU type and set using optional arguments:

Usage: python3 examples/plot_trajectories.py [-h] [-v VRU_TYPES] [-s SETS] path

Pipeline Arguments

positional arguments:
  path                  path to json files

optional arguments:
  -h, --help            show this help message and exit
  -v VRU_TYPES, --vru_types VRU_TYPES
                        select certain vru types for plotting ['ped', 'bike']
  -s SETS, --sets SETS  select certain sets for plotting ['train',
                        'validation', 'test']

Citation

If you find this dataset useful, please cite this paper (and refer the data as Aschaffenburg Pose Dataset or APD):

Kress, V. ; Zernetsch, S. ; Doll, K. ; Sick, B. : Pose Based Trajectory Forecast of Vulnerable Road Users Using Recurrent Neural Networks. In: Pattern Recognition. ICPR International Workshops and Challenges, Springer International Publishing, 2020, pp. 57-71

Similar Datasets

Acknowledgment

This work was supported by “Zentrum Digitalisierung.Bayern”. In addition, the work is backed by the project DeCoInt2 , supported by the German Research Foundation (DFG) within the priority program SPP 1835: “Kooperativ interagierende Automobile”, grant numbers DO 1186/1-2 and SI 674/11-2.

References

[1] Kress, V. ; Jung, J. ; Zernetsch, S. ; Doll, K. ; Sick, B. : Human Pose Estimation in Real Traffic Scenes. In: IEEE Symposium Series on Computational Intelligence (SSCI), 2018, pp. 518–523, doi: 10.1109/SSCI.2018.8628660

Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022