A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

Overview

PFN (Partition Filter Network)

This repository contains codes of the official implementation for the paper A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021 [PDF] [PPT]

Quick links

Model Overview

In this work, we present a new framework equipped with a novel recurrent encoder named partition filter encoder designed for multi-task learning. The encoder enforces bilateral interaction between NER and RE in two ways:

  1. The shared partition represents inter-task information and is equally accessible to both tasks, allowing for balanced interaction between NER and RE.
  2. The task partitions represent intra-task information and are formed through concerted efforts of entity and relation gates, making sure that encoding process of entity and relation features are dependent upon each other.

Preparation

Environment Setup

The experiments were performed using one single NVIDIA-RTX3090 GPU. The dependency packages can be installed with the following command:

pip install -r requirements.txt

Also, make sure that the python version is 3.7.10

Data Acquisition and Preprocessing

This is the first work that covers all the mainstream English datasets for evaluation, including [NYT, WEBNLG, ADE, ACE2005, ACE2004, SCIERC, CONLL04]. Please follow the instructions of reademe.md in each dataset folder in ./data/ for data acquisition and preprocessing.

Custom Dataset

If your custom dataset has a large number of triples that contain head-overlap entities (common in Chinese dataset), accuracy of the orignal PFN will not be good.

The orignal one will not be able to decode triples with head-overlap entities. For example, if New York and New York City are both entities, and there exists a RE prediction such as (new, cityof, USA), we cannot know what New corresponds to.

Luckily, the impact on evaluation of English dataset is limited, since such triple is either filtered out (for ADE) or rare (one in test set of SciERC, one in ACE04, zero in other datasets).

You can use our updated PFN-nested to handle the issue. PFN-nested is an enhanced version of PFN. This model is better in leveraging entity tail information and capable of handling nested triple prediction. For usage, replace the files in the root directory with the files in the PFN-nested folder, then follow the directions in Quick Start.

Performance comparison in SciERC

Model NER RE
PFN 66.8 38.4
PFN-nested 67.9 38.7

Quick Start

Model Training

The training command-line is listed below (command for CONLL04 is in Evaluation on CoNLL04):

python main.py \
--data ${NYT/WEBNLG/ADE/ACE2005/ACE2004/SCIERC} \
--do_train \
--do_eval \
--embed_mode ${bert_cased/albert/scibert} \
--batch_size ${20 (for most datasets) /4 (for SCIERC)} \
--lr ${0.00002 (for most datasets) /0.00001 (for SCIERC)} \
--output_file ${the name of your output files, e.g. ace_test} \
--eval_metric ${micro/macro} 

After training, you will obtain three files in the ./save/${output_file}/ directory:

  • ${output_file}.log records the logging information.
  • ${output_file}.txt records loss, NER and RE results of dev set and test set for each epoch.
  • ${output_file}.pt is the saved model with best average F1 results of NER and RE in the dev set.

Evaluation on Pre-trained Model

The evaluation command-line is listed as follows:

python eval.py \
--data ${NYT/WEBNLG/ADE/ACE2005/ACE2004/SCIERC} \
--eval_metric ${micro/macro} \
--model_file ${the path of saved model you want to evaluate. e.g. save/ace_test.pt} \
--embed_mode ${bert_cased/albert/scibert}

Inference on Customized Input

If you want to evaluate the model with customized input, please run the following code:

python inference.py \
--model_file ${the path of your saved model} \
--sent ${sentence you want to evaluate, str type restricted}

{model_file} must contain information about the datasets the model trained on (web/nyt/ade/ace/sci) and the type of pretrained embedding the model uses (albert/bert/scibert). For example, model_file could be set as "web_bert.pt"

Example

input:
python inference.py \
--model_file save/sci_test_scibert.pt \
--sent "In this work , we present a new framework equipped with a novel recurrent encoder   
        named partition filter encoder designed for multi-task learning ."

result:
entity_name: framework, entity type: Generic
entity_name: recurrent encoder, entity type: Method
entity_name: partition filter encoder, entity type: Method
entity_name: multi-task learning, entity type: Task
triple: recurrent encoder, Used-for, framework
triple: recurrent encoder, Part-of, framework
triple: recurrent encoder, Used-for, multi-task learning
triple: partition filter encoder, Hyponym-of, recurrent encoder
triple: partition filter encoder, Used-for, multi-task learning



input:  
python inference.py \
--model_file save/ace_test_albert.pt \
--sent "As Williams was struggling to gain production and an audience for his work in the late 1930s ,  
        he worked at a string of menial jobs that included a stint as caretaker on a chicken ranch in   
        Laguna Beach , California . In 1939 , with the help of his agent Audrey Wood , Williams was 
        awarded a $1,000 grant from the Rockefeller Foundation in recognition of his play Battle of 
        Angels . It was produced in Boston in 1940 and was poorly received ."

result:
entity_name: Williams, entity type: PER
entity_name: audience, entity type: PER
entity_name: his, entity type: PER
entity_name: he, entity type: PER
entity_name: caretaker, entity type: PER
entity_name: ranch, entity type: FAC
entity_name: Laguna Beach, entity type: GPE
entity_name: California, entity type: GPE
entity_name: his, entity type: PER
entity_name: agent, entity type: PER
entity_name: Audrey Wood, entity type: PER
entity_name: Williams, entity type: PER
entity_name: Rockefeller Foundation, entity type: ORG
entity_name: his, entity type: PER
entity_name: Boston, entity type: GPE
triple: caretaker, PHYS, ranch
triple: ranch, PART-WHOLE, Laguna Beach
triple: Laguna Beach, PART-WHOLE, California

Evaluation on CoNLL04

We also run the test on the dataset CoNLL04, but we did not report the results in our paper due to several reasons:

The command for running CoNLL04 is listed below:

python main.py \
--data CONLL04 \
--do_train \
--do_eval \
--embed_mode albert \
--batch_size 10 \
--lr 0.00002 \
--output_file ${the name of your output files} \
--eval_metric micro \
--clip 1.0 \
--epoch 200

Pre-trained Models and Training Logs

We provide you with pre-trained models for NYT/WEBNLG/ACE2005/ACE2004/SCIERC/CONLL04, along with recorded results of each epoch, identical with training results under the specified configurations above.

Download Links

Due to limited space in google drive, 10-fold model files for ADE are not available to you (training record still available).

After downloading the linked files below, unzip them and put ${data}_test.pt in the directory of ./save/ before running eval.py. Also, ${data}_test.txt and ${data}_test.log records the results of each epoch. You should check that out as well.

Dataset File Size Embedding Download
NYT 393MB Bert-base-cased Link
WebNLG 393MB Bert-base-cased Link
ACE05 815MB Albert-xxlarge-v1 Link
ACE04 3.98GB Albert-xxlarge-v1 Link
SciERC 399MB Scibert-uncased Link
ADE 214KB Bert + Albert Link
CoNLL04 815MB Albert-xxlarge-v1 Link

Result Display

F1 results on NYT/WebNLG/ACE05/SciERC:

Dataset Embedding NER RE
NYT Bert-base-cased 95.8 92.4
WebNLG Bert-base-cased 98.0 93.6
ACE05 Albert-xxlarge-v1 89.0 66.8
SciERC Scibert-uncased 66.8 38.4

F1 results on ACE04:

5-fold 0 1 2 3 4 Average
Albert-NER 89.7 89.9 89.5 89.7 87.6 89.3
Albert-RE 65.5 61.4 63.4 61.5 60.7 62.5

F1 results on CoNLL04:

Model Embedding Micro-NER Micro-RE
Table-sequence Albert-xxlarge-v1 90.1 73.6
PFN Albert-xxlarge-v1 89.6 75.0

F1 results on ADE:

10-fold 0 1 2 3 4 5 6 7 8 9 Average
Bert-NER 89.6 92.3 90.3 88.9 88.8 90.2 90.1 88.5 88.0 88.9 89.6
Bert-RE 80.5 85.8 79.9 79.4 79.3 80.5 80.0 78.1 76.2 79.8 80.0
Albert-NER 91.4 92.9 91.9 91.5 90.7 91.6 91.9 89.9 90.6 90.7 91.3
Albert-RE 83.9 86.8 82.8 83.2 82.2 82.4 84.5 82.3 81.9 82.2 83.2

Robustness Against Input Perturbation

We use robustness test to evaluate our model under adverse circumstances. In this case, we use the domain transformation methods of NER from Textflint.

The test files can be found in the folder of ./robustness_data/. Our reported results are evaluated with the linked ACE2005-albert model above. For each test file, move it to ./data/ACE2005/ and rename it as test_triples.json, then run eval.py with the instructions above.

Citation

Please cite our paper if it's helpful to you in your research.

@misc{yan2021partition,
      title={A Partition Filter Network for Joint Entity and Relation Extraction}, 
      author={Zhiheng Yan and Chong Zhang and Jinlan Fu and Qi Zhang and Zhongyu Wei},
      year={2021},
      eprint={2108.12202},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
zhy
Knowledge Graph, Information Extraction, Interpretability of NLP System
zhy
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021