Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

Overview

Real-Time Voice Cloning

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my thesis if you're curious or if you're looking for info I haven't documented. Mostly I would recommend giving a quick look to the figures beyond the introduction.

SV2TTS is a three-stage deep learning framework that allows to create a numerical representation of a voice from a few seconds of audio, and to use it to condition a text-to-speech model trained to generalize to new voices.

Video demonstration (click the picture):

Toolbox demo

Papers implemented

URL Designation Title Implementation source
1806.04558 SV2TTS Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis This repo
1802.08435 WaveRNN (vocoder) Efficient Neural Audio Synthesis fatchord/WaveRNN
1703.10135 Tacotron (synthesizer) Tacotron: Towards End-to-End Speech Synthesis fatchord/WaveRNN
1710.10467 GE2E (encoder) Generalized End-To-End Loss for Speaker Verification This repo

News

14/02/21: This repo now runs on PyTorch instead of Tensorflow, thanks to the help of @bluefish. If you wish to run the tensorflow version instead, checkout commit 5425557.

13/11/19: I'm now working full time and I will not maintain this repo anymore. To anyone who reads this:

  • If you just want to clone your voice (and not someone else's): I recommend our free plan on Resemble.AI. You will get a better voice quality and less prosody errors.
  • If this is not your case: proceed with this repository, but you might end up being disappointed by the results. If you're planning to work on a serious project, my strong advice: find another TTS repo. Go here for more info.

20/08/19: I'm working on resemblyzer, an independent package for the voice encoder. You can use your trained encoder models from this repo with it.

06/07/19: Need to run within a docker container on a remote server? See here.

25/06/19: Experimental support for low-memory GPUs (~2gb) added for the synthesizer. Pass --low_mem to demo_cli.py or demo_toolbox.py to enable it. It adds a big overhead, so it's not recommended if you have enough VRAM.

Setup

1. Install Requirements

Python 3.6 or 3.7 is needed to run the toolbox.

  • Install PyTorch (>=1.0.1).
  • Install ffmpeg.
  • Run pip install -r requirements.txt to install the remaining necessary packages.

2. Download Pretrained Models

Download the latest here.

3. (Optional) Test Configuration

Before you download any dataset, you can begin by testing your configuration with:

python demo_cli.py

If all tests pass, you're good to go.

4. (Optional) Download Datasets

For playing with the toolbox alone, I only recommend downloading LibriSpeech/train-clean-100. Extract the contents as /LibriSpeech/train-clean-100 where is a directory of your choosing. Other datasets are supported in the toolbox, see here. You're free not to download any dataset, but then you will need your own data as audio files or you will have to record it with the toolbox.

5. Launch the Toolbox

You can then try the toolbox:

python demo_toolbox.py -d
or
python demo_toolbox.py

depending on whether you downloaded any datasets. If you are running an X-server or if you have the error Aborted (core dumped), see this issue.

Owner
Corentin Jemine
Machine learning engineer at Resemble.AI
Corentin Jemine
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologรญas del Lenguaje" (Plan-TL).

Spanish Language Models ๐Ÿ’ƒ๐Ÿป Corpora ๐Ÿ“ƒ Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models ๐Ÿค– RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
NVDA, the free and open source Screen Reader for Microsoft Windows

NVDA NVDA (NonVisual Desktop Access) is a free, open source screen reader for Microsoft Windows. It is developed by NV Access in collaboration with a

NV Access 1.6k Jan 07, 2023
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)๋Š” ๋‹ค์–‘ํ•œ ์ฃผ์ œ์— ๋Œ€ํ•œ ๋ฌธ์„œ ์ง‘ํ•ฉ์œผ๋กœ๋ถ€ํ„ฐ ์ž์—ฐ์–ด ์งˆ์˜์— ๋Œ€ํ•œ ๋‹ต๋ณ€์„ ์ฐพ์•„์˜ค๋Š” task์ž…๋‹ˆ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ์ž ์งˆ์˜์— ๋‹ต๋ณ€ํ•˜๊ธฐ ์œ„ํ•ด ์ฃผ์–ด์ง€๋Š” ์ง€๋ฌธ์ด ๋”ฐ๋กœ ์กด์žฌํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ์ „์— ๊ตฌ์ถ•๋˜์–ด์žˆ๋Š” Knowl

VUMBLEB 69 Nov 04, 2022
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Udit Arora 19 Oct 28, 2022
GSoC'2021 | TensorFlow implementation of Wav2Vec2

GSoC'2021 | TensorFlow implementation of Wav2Vec2

Vasudev Gupta 73 Nov 28, 2022
CCF BDCI 2020 ๆˆฟไบง่กŒไธš่Šๅคฉ้—ฎ็ญ”ๅŒน้…่ต›้“ Aๆฆœ47/2985

CCF BDCI 2020 ๆˆฟไบง่กŒไธš่Šๅคฉ้—ฎ็ญ”ๅŒน้… Aๆฆœ47/2985 ่ต›้ข˜ๆ่ฟฐ่ฏฆ่ง๏ผšhttps://www.datafountain.cn/competitions/474 ๆ–‡ไปถ่ฏดๆ˜Ž data: ๅญ˜ๆ”พ่ฎญ็ปƒๆ•ฐๆฎๅ’Œๆต‹่ฏ•ๆ•ฐๆฎไปฅๅŠ้ข„ๅค„็†ไปฃ็  model_bert.py: ็ฝ‘็ปœๆจกๅž‹็ป“ๆž„ๅฎšไน‰ adv_train

shuo 40 Sep 28, 2022
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
Train ๐Ÿค—-transformers model with Poutyne.

poutyne-transformers Train ๐Ÿค— -transformers models with Poutyne. Installation pip install poutyne-transformers Example import torch from transformers

Lennart Keller 2 Dec 18, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022