Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Overview

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Authors:

*: Equal Contribution

Introduction

This repo contains implementation of the group VSA and binary HDC model with random Fourier feature (RFF) encoding, described in the paper Understanding Hyperdimensional Computing for Parallel Single-Pass Learning.

Our RFF method and group VSA can outperform the state-of-the-art HDC model while maintaining hardware efficiency. For example, on MNIST,

Model 1-Epoch Accuracy 10-Epoch Accuracy Circuit-Depth Complexity
Percep. 94.3 % 94.3 % 1299
SOTA HDC NA 89.0 % 295
RFF HDC 95.4 % 95.4 % 295
RFF G(2^3)-VSA 96.3 % 95.7 % 405

Dependencies and Data

Numpy and PyTorch>=1.0.0 are required to run the implementation. Supported datasets include MNIST, Fashion-MNIST, CIFAR-10, ISOLET and UCI-HAR. We provide the ISOLET and UCI-HAR data in dataset folder.

Usage

Please create the ./encoded_data folder before running the following code.

$ python main.py [-h] [-lr LR] [-gamma GAMMA] [-epoch EPOCH] [-gorder GORDER] [-dim DIM] 
[-data_dir DATA_DIR] [-model MODEL]
optional arguments:
  -h, --help            show this help message and exit
  -lr LR                learning rate for optimizing class representative
  -gamma GAMMA          kernel parameter for computing covariance
  -epoch EPOCH          epochs of training
  -gorder GORDER        order of the cyclic group required for G-VSA
  -dim DIM              dimension of hypervectors
  -resume               resume from existing encoded hypervectors
  -data_dir DATA_DIR    Directory used to save encoded data (hypervectors)
  -dataset {mnist,fmnist,cifar,isolet,ucihar}
                        dataset (mnist | fmnist | cifar | isolet | ucihar)
  -raw_data_dir RAW_DATA_DIR
                        Raw data directory to the dataset
  -model {rff-hdc,linear-hdc,rff-gvsa}
                        feature and model to use: (rff-hdc | linear-hdc | rff-gvsa)

For example,

$ python main.py -gamma 0.3 -epoch 10 -gorder 8 -dim 10000 -dataset mnist -model rff-gvsa

Citation

If you find this repo useful, please cite:


Owner
Cornell RelaxML
Chris De Sa's Research Group
Cornell RelaxML
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022