Semantic similarity computation with different state-of-the-art metrics

Related tags

Deep LearningTaxoSS
Overview

Semantic similarity computation with different state-of-the-art metrics

DescriptionInstallationUsageLicense


Description

TaxoSS is a semantic similarity library for Python which implements the state-of-the-art semantic similarity metrics like Resnik, JCN, and HSS.

Requirements

  • Python 3.6 or later
  • NLTK
  • NumPy
  • Pandas

Installation

TaxoSS can be installed through pip (the Python package manager) in the following way:

pip install taxoss

Usage

Semantic similarity functions

You can compute the semantic similarity in the following way:

from TaxoSS.functions import semantic_similarity
semantic_similarity('brother', 'sister', 'hss')

3.353513521371089

The function semantic_similarity(word1, word2, kind, ic) has these options for the argument kind:

  • hss -> HSS (default)
  • wup -> WUP
  • lcs -> LC
  • path_sim -> Shortest Path
  • resnik -> Resnik
  • jcn -> Jiang-Conrath
  • lin -> Lin
  • seco -> Seco

For the argument ic see the following section.

Information Content

Using a Wikipedia copus for calculating the Information Content (default of the argument ic):

from TaxoSS.functions import semantic_similarity
semantic_similarity('cat', 'dog', 'resnik')

6.169410755220327

Calculating Information Conent from a given corpus:

from TaxoSS.calculate_IC import calculate_IC
from TaxoSS.functions import semantic_similarity

calculate_IC(path_to_corpus, path_to_save_IC_file)
semantic_similarity('cat', 'dog', 'resnik', path_to_save_IC_file)

with path_to_save_IC_file a path into the virtual environment TaxoSS package, e.g. venv/lib/python3.6/site-packages/TaxoSS/data/prova_IC.csv.

Benchmark

HSS (ours) HSS (ours) WUP WUP LC LC Shortest Path Shortest Path Resnik Resnik Jiang-Conrath Jiang-Conrath Lin Lin Seco Seco
Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman
MEN 0.41 0.33 0.36 0.33 0.14 0.05 0.07 0.03 0.05 0.03 -0.05 -0.04 0.05 0.04 -0.01 0.03
MC30 0.74 0.69 0.74 0.73 0.33 0.21 0.22 0.3 0.13 0.03 -0.06 -0.01 0.05 0.01 0.13 -0.09
WSS 0.68 0.65 0.58 0.59 0.36 0.23 0.16 0.1 0.02 -0.03 0.04 0.06 0.03 0.06 -0.01 -0.04
Simlex999 0.4 0.38 0.45 0.43 0.26 0.15 0.2 0.16 -0.04 -0.04 0.12 0.14 0.12 0.14 -0.02 -0.08
MT287 0.46 0.31 0.4 0.28 0.26 0.12 0.11 0.11 0.03 0.04 0.18 0.16 0.22 0.17 0 -0.06
MT771 0.44 0.4 0.43 0.49 0.06 0.02 0.1 0.13 0 -0.01 0 0 0 0 -0.05 -0.03
Time per pair (s) 0.0007 0.0007 0.008 0.008 0.0055 0.0055 0.0064 0.0064 0.5586 0.5586 0.551 0.551 0.5866 0.5866 0.0013 0.0013
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022