Ladder network is a deep learning algorithm that combines supervised and unsupervised learning

Overview

This repository contains source code for the experiments in a paper titled Semi-Supervised Learning with Ladder Networks by A Rasmus, H Valpola, M Honkala, M Berglund, and T Raiko.

Required libraries

Install Theano, Blocks Stable 0.2, Fuel Stable 0.2

Refer to the Blocks installation instructions for details but use tag v0.2 instead. Something along:

pip install git+git://github.com/mila-udem/[email protected]
pip install git+git://github.com/mila-udem/[email protected]

Fuel comes with Blocks, but you need to download and convert the datasets. Refer to the Fuel documentation. One might need to rename the converted files.

fuel-download mnist
fuel-convert mnist --dtype float32
fuel-download cifar10
fuel-convert cifar10
Alternatively, one can use the environment.yml file that is provided in this repo to create an conda environment.
  1. First install anaconda from https://www.continuum.io/downloads. Then,
  2. conda env create -f environment.yml
  3. source activate ladder
  4. The environment should be good to go!

Models in the paper

The following commands train the models with seed 1. The reported numbers in the paper are averages over several random seeds. These commands use all the training samples for training (--unlabeled-samples 60000) and none are used for validation. This results in a lot of NaNs being printed during the trainining, since the validation statistics are not available. If you want to observe the validation error and costs during the training, use --unlabeled-samples 50000.

MNIST all labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,1,0.01,0.01,0.01,0.01,0.01 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_full
# Bottom
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,2 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_all_baseline
MNIST 100 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 5000,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_bottom
# Gamma
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0.5 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_100_baseline
MNIST 1000 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --f-local-noise-std 0.2 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,10 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_1000_baseline
MNIST 50 labels
# Full model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --labeled-samples 50 --unlabeled-samples 60000 --seed 1 -- mnist_50_full
MNIST convolutional models
# Conv-FC
run.py train --encoder-layers convv:1000:26:1:1-convv:500:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_fc
# Conv-Small, Gamma
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1  -- mnist_100_conv_gamma
# Conv-Small, supervised baseline. Overfits easily, so keep training short.
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --f-local-noise-std 0.45 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_baseline
CIFAR models
# Conv-Large, Gamma
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-gauss --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,4.0 --num-epochs 70 --lrate-decay 0.86 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_gamma
# Conv-Large, supervised baseline. Overfits easily, so keep training short.
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-0 --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_baseline
Evaluating models with testset

After training a model, you can infer the results on a test set by performing the evaluate command. An example use after training a model:

./run.py evaluate results/mnist_all_bottom0
Owner
Curious AI
Deep good. Unsupervised better.
Curious AI
This repository contains the Unix Game challenges and metadata

This repository contains the Unix Game challenges and metadata

Nokia 7 Apr 06, 2022
Lucky Balls is gambling game where user try to guess 6 numbers from 1 to 48 that computer has picked.

LUCKY BALLS Lucky Balls is gambling game where user try to guess 6 numbers from 1 to 48 that computer has picked. INSTRUCTIONS User input his bet, tha

rile037 2 Dec 28, 2021
Termordle - a terminal based wordle clone in python

Termordle - a terminal based wordle clone in python

2 Feb 08, 2022
Tic Tac Toe game developed in python; have 2 difficulty levels

Tic Tac Toe Game This is a code for Tic Tac Toe game in python. Game has 2 difficulty levels. Easy Hard To play the game, use this command in a LINUX

Akshat Mittal 1 Jun 25, 2022
BritishTrainsDepartureBoard - A pygame program that immitates the dot matrix departure screens found at National Rail stations

BritishTrainsDepartureBoard - A pygame program that immitates the dot matrix departure screens found at National Rail stations

Finn O'Neill 3 Aug 10, 2022
We tried to recreate this classic game using python physics libraries.

We tried to recreate this classic game using python physics libraries. The result is certainly hilarious but enjoyable. One of my very first physics application.

Delwys Glokpor 2 Dec 12, 2021
Battle of Saiyans: Goku v Vegeta is a 1 v 1, (Player vs CPU) 2D Martial arts fighting game

Battle of Saiyans: Goku v Vegeta is a 1 v 1, (Player vs CPU) 2D Martial arts fighting game inspired by the popular anime series Dragon Ball Z The game

ARZ 3 Feb 16, 2022
This is a 2D Link to the Past-esque game made using Python 3.2.5 and pygame 1.9.2

Queen-s-Demise Queen's Demise This is a 2D Link to the Past-esque game made using Python 3.2.5 and pygame 1.9.2 I made this for a game development cla

Zoey 1 Dec 15, 2021
Abandoned plan for a clone of the old Flash game Star Relic

space-grid When I was in middle school, I was a fan of the Flash game Star Relic (no longer playable in modern browsers, but it works alright in Flash

Radon Rosborough 3 Aug 23, 2021
Visualizing and learning from games on chess.com

Better Your Chess What for? This project aims to help you learn from all the chess games you've played online, starting with a simple way to download

Luc d'Hauthuille 0 Apr 17, 2022
Simplerpg - python terminal game made from scratch.

Simplerpg - python terminal game made from scratch.

reversee 3 Sep 17, 2022
Snake game mixed with Conway's Game of Life

SnakeOfLife Snake game mixed with Conway's Game of Life The rules are the same than a normal snake game but you have to avoid cells created by Conway'

Aidan 5 May 26, 2022
Ultimaze est un jeu en 2.5D, réalisé dans le cadre d'un projet de NSI.

Ultimaze Ultimaze est un jeu en 2.5D, réalisé dans le cadre d'un projet de NSI. La consigne était d'utiliser la librairie pygame pour créer un jeu en

parlabarbedeMerlin 3 Sep 17, 2022
For educational purposes, a simple script that assists in solving the word game Wordle.

WordleSolver For educational purposes, a simple script that assists in solving the word game Wordle. Instructions Pick your first word from the sugges

Christian De Leon 2 Mar 25, 2022
source codes for my(small indie game developer) games

My repository for most of my finished && unfinished games Table of Contents Getting Started Prerequisites Installation Usage License Contact Prerequis

Gustavs Jākobsons 1 Jan 30, 2022
A game based on Motus, to be played on Unix terminals.

Motus python game A game based on Motus, to be played on Unix terminals. How to play? Before playing, you need to install all the requirements needed

Arthur Molia 1 Feb 02, 2022
Hex-brawl-v25 - Simple Brawl Stars v25.107 server emulator written in Python

Hex Brawl Simple Brawl Stars v25.107 server emulator written in Python. Requirem

Shark01 3 Nov 24, 2022
Pyvidplayer - An extremely easy to use module that plays videos on Pygame

pyvidplayer An extremely easy to use module that plays videos on Pygame Example

17 Dec 05, 2022
Wordle - Wordle Clone With Python

Wordle Clone Python This is a cli clone of the famous wordle game developed by J

Shivam Pandya 20 Jul 07, 2022
AI based assitant for minecarft

Minecraft_AI_assistant AI-based assistant for Minecraft There are 4 steps to build 1-I'm using collecting_data.png as a structure to take shots with c

Murat Ali Avcu 13 Oct 16, 2022