Ladder network is a deep learning algorithm that combines supervised and unsupervised learning

Overview

This repository contains source code for the experiments in a paper titled Semi-Supervised Learning with Ladder Networks by A Rasmus, H Valpola, M Honkala, M Berglund, and T Raiko.

Required libraries

Install Theano, Blocks Stable 0.2, Fuel Stable 0.2

Refer to the Blocks installation instructions for details but use tag v0.2 instead. Something along:

pip install git+git://github.com/mila-udem/[email protected]
pip install git+git://github.com/mila-udem/[email protected]

Fuel comes with Blocks, but you need to download and convert the datasets. Refer to the Fuel documentation. One might need to rename the converted files.

fuel-download mnist
fuel-convert mnist --dtype float32
fuel-download cifar10
fuel-convert cifar10
Alternatively, one can use the environment.yml file that is provided in this repo to create an conda environment.
  1. First install anaconda from https://www.continuum.io/downloads. Then,
  2. conda env create -f environment.yml
  3. source activate ladder
  4. The environment should be good to go!

Models in the paper

The following commands train the models with seed 1. The reported numbers in the paper are averages over several random seeds. These commands use all the training samples for training (--unlabeled-samples 60000) and none are used for validation. This results in a lot of NaNs being printed during the trainining, since the validation statistics are not available. If you want to observe the validation error and costs during the training, use --unlabeled-samples 50000.

MNIST all labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,1,0.01,0.01,0.01,0.01,0.01 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_full
# Bottom
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,2 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_all_baseline
MNIST 100 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 5000,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_bottom
# Gamma
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0.5 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_100_baseline
MNIST 1000 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --f-local-noise-std 0.2 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,10 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_1000_baseline
MNIST 50 labels
# Full model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --labeled-samples 50 --unlabeled-samples 60000 --seed 1 -- mnist_50_full
MNIST convolutional models
# Conv-FC
run.py train --encoder-layers convv:1000:26:1:1-convv:500:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_fc
# Conv-Small, Gamma
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1  -- mnist_100_conv_gamma
# Conv-Small, supervised baseline. Overfits easily, so keep training short.
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --f-local-noise-std 0.45 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_baseline
CIFAR models
# Conv-Large, Gamma
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-gauss --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,4.0 --num-epochs 70 --lrate-decay 0.86 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_gamma
# Conv-Large, supervised baseline. Overfits easily, so keep training short.
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-0 --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_baseline
Evaluating models with testset

After training a model, you can infer the results on a test set by performing the evaluate command. An example use after training a model:

./run.py evaluate results/mnist_all_bottom0
Owner
Curious AI
Deep good. Unsupervised better.
Curious AI
Implementation of the famous puzle Tower of Hanoi

Tower_of_Hanoi Implementation of the famous puzle "Tower of Hanoi". The setup consists of three pegs (sticks) and a certain amount of discs (in this i

Raffaele Fiorillo 3 Mar 08, 2022
In the works, creating a new Chess Board and way to Play...

sWJz4KingsChess date started on github.com 11-13-2021 In the works, creating a new Chess Board and way to Play... starting to write this in Pygame, an

Shawn 2 Nov 18, 2021
A game that depicts a real astronaut's struggles

Interstel-quickscooping-game Right from the beginning of our (i.e, me and me alone) journey in the creation of this game, our goal was to give a game

Sharath V 3 Jul 12, 2021
Exposè for i3 WM. Fork of https://gitlab.com/d.reis/i3expo to fix crashes and improve features/usability

Overwiew Expo is an simple and straightforward way to get a visual impression of all your current virtual desktops that many compositing window manage

137 Nov 03, 2022
Tic tac toe game developed by naman in python

TIC TAC TOE GAME DEVELOPED BY NAMAN IN PYTHON . IT USES MINMAX ALGORITHM TO COMPETE IN DIFFICULTY MODE

Naman Anand 4 Jun 24, 2022
My first Minecraft CPU. Created in collaboration with Peer Carnes as a final project in CS 281: Architecture and Assembly at the University of Puget Sound

Minecraft CPU This is my first ever Minecraft CPU, created in collaboration with Peer Carnes. We created a custom assembly language, including an asse

Andy Chamberlain 4 Oct 10, 2022
PyCharge is an open-source computational electrodynamics Python simulator

PyCharge PyCharge is an open-source computational electrodynamics Python simulator that can calculate the electromagnetic fields and potentials genera

Matthew Filipovich 28 Jan 03, 2023
Script to remap minecraft 1.12 java classes.

Remapper Script to remap minecraft 1.12 java classes. Usage You must have Python installed. You must have the script, mappings, and files / folders in

8 Dec 02, 2022
Wordle-player - An optimal player for Wordle. Based on a rough understanding of information theory

Wordle-player - An optimal player for Wordle. Based on a rough understanding of information theory

Neill Johnston 3 Feb 26, 2022
A minecraft bedrock server software written in python (3.X)

Podrum README also available in: English 🇺🇸 Français 🇫🇷 Deutsch 🇩🇪 Español 🇪🇸 Tiếng Việt 🇻🇳 Italiana 🇮🇹 Русский 🇷🇺 中文 🇨🇳 Is a Minecraf

Podrum 53 Nov 11, 2022
Super Mario Kart November 1991 Prototype Repair by MrL314

Super Mario Kart November 1991 Prototype Repair by MrL314

MrL314 51 Dec 26, 2022
Editing tool (read/write) .sc files (*_tes.sc , *.sc, *_dl.sc ) from Supercell games (Brawl Stars, Clash Royale, Clash of Clans and others).

SupercellSWF Version 0.1.0.2 About Editing tool (read/write) .sc files (*_tes.sc , *.sc, *_dl.sc ) from Supercell games (Brawl Stars, Clash Royale, Cl

Fred31 11 Jun 23, 2022
A terminal-based number guessing game written in python

A terminal-based number guessing game written in python

Akshay Vs 15 Sep 22, 2022
Minecraft Script to Tellraw Datapack Generator

Minecraft Script to Tellraw Datapack Geneator (STDG) can generate a chain of tellraw command in datapack from script.

1 Jan 28, 2022
A base chess engine that makes moves on an instance of board.

A base chess engine that makes moves on an instance of board.

0 Feb 11, 2022
Inflitator is a classic doom and wolfenstein3D like game made in Python, using the famous PYGAME module.

INFLITATOR Raycaster INFLITATOR is a raycaster made in Python3 with Pygame. It is a game built on top of a simple engine of the same name. An example

Zanvok Corporation 1 Jan 07, 2022
Vitrix is an open-source FPS video game coded in python

Vitrix is an open-source FPS video game coded in python Table of contents Usage Game Server Installing Requirements Hardware Requirements Software Req

Vitrix 1 Feb 13, 2022
Web frontend to play games from 2008 Miniclip - uses Ruffle for playback

cliparchive Description A set of scripts to download games from the Wayback Machine's archive of Miniclip.com, and a Web frontend to play them using r

Simon Garrelou 3 Dec 09, 2022
BitBot - A simple shooter game

BitBot BitBot - A simple shooter game This project can be discontinued anytime I want, as it is not a "MAJOR" project for me. Which Game Engine does i

whmsft 1 Jan 04, 2022
AWBW Replay Parser - a Python package to open and step through AWBW game replays.

AWBW Replay Parser This repository is home to the AWBW Replay Parser, a Python package to open and step through AWBW game replays. This project is una

Tarkan Al-Kazily 2 Feb 09, 2022