Distributed Evolutionary Algorithms in Python

Related tags

Deep Learningdeap
Overview

DEAP

Build status Download Join the chat at https://gitter.im/DEAP/deap Build Status Documentation Status

DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data structures transparent. It works in perfect harmony with parallelisation mechanisms such as multiprocessing and SCOOP.

DEAP includes the following features:

  • Genetic algorithm using any imaginable representation
    • List, Array, Set, Dictionary, Tree, Numpy Array, etc.
  • Genetic programing using prefix trees
    • Loosely typed, Strongly typed
    • Automatically defined functions
  • Evolution strategies (including CMA-ES)
  • Multi-objective optimisation (NSGA-II, NSGA-III, SPEA2, MO-CMA-ES)
  • Co-evolution (cooperative and competitive) of multiple populations
  • Parallelization of the evaluations (and more)
  • Hall of Fame of the best individuals that lived in the population
  • Checkpoints that take snapshots of a system regularly
  • Benchmarks module containing most common test functions
  • Genealogy of an evolution (that is compatible with NetworkX)
  • Examples of alternative algorithms : Particle Swarm Optimization, Differential Evolution, Estimation of Distribution Algorithm

Downloads

Following acceptance of PEP 438 by the Python community, we have moved DEAP's source releases on PyPI.

You can find the most recent releases at: https://pypi.python.org/pypi/deap/.

Documentation

See the DEAP User's Guide for DEAP documentation.

In order to get the tip documentation, change directory to the doc subfolder and type in make html, the documentation will be under _build/html. You will need Sphinx to build the documentation.

Notebooks

Also checkout our new notebook examples. Using Jupyter notebooks you'll be able to navigate and execute each block of code individually and tell what every line is doing. Either, look at the notebooks online using the notebook viewer links at the botom of the page or download the notebooks, navigate to the you download directory and run

jupyter notebook

Installation

We encourage you to use easy_install or pip to install DEAP on your system. Other installation procedure like apt-get, yum, etc. usually provide an outdated version.

pip install deap

The latest version can be installed with

pip install git+https://github.com/DEAP/[email protected]

If you wish to build from sources, download or clone the repository and type

python setup.py install

Build Status

DEAP build status is available on Travis-CI https://travis-ci.org/DEAP/deap.

Requirements

The most basic features of DEAP requires Python2.6. In order to combine the toolbox and the multiprocessing module Python2.7 is needed for its support to pickle partial functions. CMA-ES requires Numpy, and we recommend matplotlib for visualization of results as it is fully compatible with DEAP's API.

Since version 0.8, DEAP is compatible out of the box with Python 3. The installation procedure automatically translates the source to Python 3 with 2to3.

Example

The following code gives a quick overview how simple it is to implement the Onemax problem optimization with genetic algorithm using DEAP. More examples are provided here.

import random
from deap import creator, base, tools, algorithms

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)

toolbox = base.Toolbox()

toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)

NGEN=40
for gen in range(NGEN):
    offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
    fits = toolbox.map(toolbox.evaluate, offspring)
    for fit, ind in zip(fits, offspring):
        ind.fitness.values = fit
    population = toolbox.select(offspring, k=len(population))
top10 = tools.selBest(population, k=10)

How to cite DEAP

Authors of scientific papers including results generated using DEAP are encouraged to cite the following paper.

@article{DEAP_JMLR2012, 
    author    = " F\'elix-Antoine Fortin and Fran\c{c}ois-Michel {De Rainville} and Marc-Andr\'e Gardner and Marc Parizeau and Christian Gagn\'e ",
    title     = { {DEAP}: Evolutionary Algorithms Made Easy },
    pages    = { 2171--2175 },
    volume    = { 13 },
    month     = { jul },
    year      = { 2012 },
    journal   = { Journal of Machine Learning Research }
}

Publications on DEAP

  • François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP -- Enabling Nimbler Evolutions", SIGEVOlution, vol. 6, no 2, pp. 17-26, February 2014. Paper
  • Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: Evolutionary Algorithms Made Easy", Journal of Machine Learning Research, vol. 13, pp. 2171-2175, jul 2012. Paper
  • François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: A Python Framework for Evolutionary Algorithms", in !EvoSoft Workshop, Companion proc. of the Genetic and Evolutionary Computation Conference (GECCO 2012), July 07-11 2012. Paper

Projects using DEAP

  • Ribaric, T., & Houghten, S. (2017, June). Genetic programming for improved cryptanalysis of elliptic curve cryptosystems. In 2017 IEEE Congress on Evolutionary Computation (CEC) (pp. 419-426). IEEE.
  • Ellefsen, Kai Olav, Herman Augusto Lepikson, and Jan C. Albiez. "Multiobjective coverage path planning: Enabling automated inspection of complex, real-world structures." Applied Soft Computing 61 (2017): 264-282.
  • S. Chardon, B. Brangeon, E. Bozonnet, C. Inard (2016), Construction cost and energy performance of single family houses : From integrated design to automated optimization, Automation in Construction, Volume 70, p.1-13.
  • B. Brangeon, E. Bozonnet, C. Inard (2016), Integrated refurbishment of collective housing and optimization process with real products databases, Building Simulation Optimization, pp. 531–538 Newcastle, England.
  • Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore (2016). Automating biomedical data science through tree-based pipeline optimization. Applications of Evolutionary Computation, pages 123-137.
  • Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore (2016). Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. Proceedings of GECCO 2016, pages 485-492.
  • Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J, Muller EB, Schürmann F, Segev I and Markram H (2016). BluePyOpt: Leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. Front. Neuroinform. 10:17. doi: 10.3389/fninf.2016.00017 https://github.com/BlueBrain/BluePyOpt
  • Lara-Cabrera, R., Cotta, C. and Fernández-Leiva, A.J. (2014). Geometrical vs topological measures for the evolution of aesthetic maps in a rts game, Entertainment Computing,
  • Macret, M. and Pasquier, P. (2013). Automatic Tuning of the OP-1 Synthesizer Using a Multi-objective Genetic Algorithm. In Proceedings of the 10th Sound and Music Computing Conference (SMC). (pp 614-621).
  • Fortin, F. A., Grenier, S., & Parizeau, M. (2013, July). Generalizing the improved run-time complexity algorithm for non-dominated sorting. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 615-622). ACM.
  • Fortin, F. A., & Parizeau, M. (2013, July). Revisiting the NSGA-II crowding-distance computation. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 623-630). ACM.
  • Marc-André Gardner, Christian Gagné, and Marc Parizeau. Estimation of Distribution Algorithm based on Hidden Markov Models for Combinatorial Optimization. in Comp. Proc. Genetic and Evolutionary Computation Conference (GECCO 2013), July 2013.
  • J. T. Zhai, M. A. Bamakhrama, and T. Stefanov. "Exploiting Just-enough Parallelism when Mapping Streaming Applications in Hard Real-time Systems". Design Automation Conference (DAC 2013), 2013.
  • V. Akbarzadeh, C. Gagné, M. Parizeau, M. Argany, M. A Mostafavi, "Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage", Accepted in IEEE Transactions on Instrumentation and Measurement, 2012.
  • M. Reif, F. Shafait, and A. Dengel. "Dataset Generation for Meta-Learning". Proceedings of the German Conference on Artificial Intelligence (KI'12). 2012.
  • M. T. Ribeiro, A. Lacerda, A. Veloso, and N. Ziviani. "Pareto-Efficient Hybridization for Multi-Objective Recommender Systems". Proceedings of the Conference on Recommanders Systems (!RecSys'12). 2012.
  • M. Pérez-Ortiz, A. Arauzo-Azofra, C. Hervás-Martínez, L. García-Hernández and L. Salas-Morera. "A system learning user preferences for multiobjective optimization of facility layouts". Pr,oceedings on the Int. Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO'12). 2012.
  • Lévesque, J.C., Durand, A., Gagné, C., and Sabourin, R., Multi-Objective Evolutionary Optimization for Generating Ensembles of Classifiers in the ROC Space, Genetic and Evolutionary Computation Conference (GECCO 2012), 2012.
  • Marc-André Gardner, Christian Gagné, and Marc Parizeau, "Bloat Control in Genetic Programming with Histogram-based Accept-Reject Method", in Proc. Genetic and Evolutionary Computation Conference (GECCO 2011), 2011.
  • Vahab Akbarzadeh, Albert Ko, Christian Gagné, and Marc Parizeau, "Topography-Aware Sensor Deployment Optimization with CMA-ES", in Proc. of Parallel Problem Solving from Nature (PPSN 2010), Springer, 2010.
  • DEAP is used in TPOT, an open source tool that uses genetic programming to optimize machine learning pipelines.
  • DEAP is also used in ROS as an optimization package http://www.ros.org/wiki/deap.
  • DEAP is an optional dependency for PyXRD, a Python implementation of the matrix algorithm developed for the X-ray diffraction analysis of disordered lamellar structures.
  • DEAP is used in glyph, a library for symbolic regression with applications to MLC.

If you want your project listed here, send us a link and a brief description and we'll be glad to add it.

Owner
Distributed Evolutionary Algorithms in Python
Distributed Evolutionary Algorithms in Python
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022