Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

Overview

IMDB Sentiment Analysis

This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial Intelligence and Automation

Training

To train a model (CNN, LSTM, Transformer), simply run

python train.py --cfg <./model/xxx> --save <./save/>

You can change the configuration in config.

Model

LSTM

we follow the origin LSTM as possible

lstm

CNN

we adopt the methods mentioned in Effective Use of Word Order for Text Categorization with Convolutional Neural Networks

cnn

Transformer

We use the original Transformer Encoder as Attention is all you need and use the concept of CLS Token as BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

trans

Experiment result

Model Comparison

Model Accuracy
LSTM 89.02
Transformer 87.47
CNN 88.66
Fine-tuned BERT 93.43

LSTM

Batch size
Batch size Loss Accuracy
64 0.4293 0.8802
128 0.4298 0.8818
256 0.4304 0.8836
512 0.4380 0.8807
Embedding Size
Embedding size train Loss train Accuracy val loss val accuracy
32 0.4021 0.9127 0.4419 0.8707
64 0.3848 0.9306 0.4297 0.8832
128 0.3772 0.9385 0.4265 0.8871
256 0.3584 0.9582 0.4303 0.8825
512 0.3504 0.9668 0.4295 0.8838
Drop out
Drop out rate Train Loss Train Accuracy Test loss Test Accuracy
0.0 0.3554 0.9623 0.4428 0.8704
0.1 0.3475 0.9696 0.4353 0.8780
0.2 0.3516 0.9652 0.4312 0.8825
0.3 0.3577 0.9589 0.4292 0.8844
0.4 0.3587 0.9576 0.4272 0.8868
0.5 0.3621 0.9544 0.4269 0.8865
0.6 0.3906 0.9242 0.4272 0.8863
0.7 0.3789 0.9356 0.4303 0.8826
0.8 0.3939 0.9204 0.4311 0.8826
0.9 0.4211 0.8918 0.4526 0.8584
Weight decay
Weight decay train loss train accuracy test loss test accuracy
1.0e-8 0.3716 0.9436 0.4261 0.8876
1.0e-7 0.3803 0.9349 0.4281 0.8862
1.0e-6 0.3701 0.9456 0.4264 0.8878
1.0e-5 0.3698 0.9461 0.4283 0.8850
1.0e-4 0.3785 0.9377 0.4318 0.8806
Number layers

Number of LSTM blocks

Number layers train loss train accuracy test loss test accuracy
1 0.3786 0.9364 0.4291 0.8844
2 0.3701 0.9456 0.4264 0.8878
3 0.3707 0.9451 0.4243 0.8902
4 0.3713 0.9446 0.4279 0.8857

CNN

out channel size
out size train acc test acc
8 0.9679 0.8743
16 0.9791 0.8767
32 0.9824 0.8811
64 0.9891 0.8848
128 0.9915 0.8824
256 0.9909 0.8827
512 0.9920 0.8841
1024 0.9959 0.8833
multi scale filter
Number train acc test acc
1 [5] 0.9698 0.8748
2 [5, 11] 0.9852 0.8827
3 [5, 11, 17] 0.9890 0.8850
4 [5, 11, 17, 23] 0.9915 0.8848
5 [5, 11, 17, 23, 29] 0.9924 0.8842
6 [5, 11, 17, 23, 29, 35] 0.9930 0.8836
step train acc test acc
2 [5 7 9] 0.9878 0.8816
4 [5 9 11] 0.9890 0.8816
6 [5 11 17] 0.9919 0.8834
8 [5 13 21] 0.9884 0.8836
10[5 15 25] 0.9919 0.8848
12[5 17 29] 0.9898 0.8812
14[5 29 43] 0.9935 0.8809
Owner
Daniel
Daniel
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
📔️ Generate a text-based journal from a template file.

JGen 📔️ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Amazon Web Services - Labs 1.1k Dec 27, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 04, 2023
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Meta Research 711 Jan 08, 2023
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

Explosion 1.2k Jan 08, 2023
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022