Customizing Visual Styles in Plotly

Overview

Customizing Visual Styles in Plotly

Code for a workshop originally developed for an Unconference session during the Outlier Conference hosted by Data Visualization Society.

To jump right in:

Fork this repository, or download the Jupyter Notebook file Styling_Plotly_Themes_Templates.ipynb.

Ever have that feeling that a lot of data viz you see screams the tool it was made in? Using the Plotly Open Source Python Graphing Library, we will take a look under the hood of:

  • the style themes available,
  • understand the visual elements like figure and chart backgrounds, and
  • build our own default theme script inspired by 1980's computers.

This informal workshop is for a seasoned Pythonista wanting to add to your design toolbox or a newbie curious about custom interfaces beyond the usual BI tools (listen or follow along).

You can also check out all of Plotly's open source graphing libraries, including R, JavaScript, and more here.

Quick Start Prep

(most of this occurs before the workshop to follow along live...)

We're not going to spend too much time here, but if you're just starting out in Python, and want to get your hands dirty, here's a few building blocks useful to get the most from the workshop:

  1. Python ...All you really need is a Python code interpreter installed as a foundation.

    1. Start from the source, Python Software Foundation's helpful steps and downloads (yep, the be all end all source).
      1. Many computers come with a version pre-installed, a bit old, but if you don't want to touch or download anything, it may get you acquainted, at least. (to check in command line or terminal, run python --version)
    2. Or Python comes with an Anaconda installation (bigger topic than this workshop, but if you're in it for the long haul using Python consider e.g. the Individual Edition or a miniconda).

  2. A virtual environment (optional, but do this next if you're doing it.)

    1. Skip this step if the sound of it or # steps has you scared away already! Don't go, stay!
    2. It's recommended, but not necessary, to make and work in an isolated virtual environment for any Python project like this one, to help manage work requiring different versions of things.
      1. Options to manage this:
        1. I find virtualenv a sure bet,
          1. (e.g. On Mac Terminal (Zsh), from my project root folder, I ran virtualenv plotlystyle_env to make it; to activate it, I'll run source plotlystyle_env/bin/activate) _pip install virtualenv_if necessary first.
          2. I'll refer you to the docs for Windows.
        2. the simplified venv built into Python version 3.3+,
        3. Conda which I feel is cleanest with its centralized file structure, but fussy at times like an angry schoolchild, and
        4. those are the big ones.

  3. Jupyter Notebook (strongly recommended, we'll spend the workshop in the .ipynb Notebook file)

    1. Notebooks run directly in your web browser, so you need: Chrome, Safari, or Firefox (up to date Opera and Edge maybe works)

    2. If you installed an Anaconda distribution in step 1, congratulations, Jupyter Notebook is included! Read up on running the Notebook where we'll pick up!

    3. You can alternately install Jupyter Notebook with the pip package manager.

    4. If you're working in a virtual environment (step 2 above), also install the IPython kernel.

      1. Otherwise, this Jupyter Notebooks does have this automatically for your system Python interpreter.
      2. This basically supports more quick, interactive, code which makes Notebooks great for learning in chunks, and exploring without running a whole script.
  4. Kiss your brain!

Who's tired of hyperlinks and docs already?! You promised fun!

General Disclaimer

This work is open source, like Plotly Open Source Graphing Libraries, so try it, use it and spread the love by teaching someone else!
To keep up with what others are working on, join the Plotly Community Forum. Made with 💌 for the Python and data viz ecosystems under the limited liability company Data, Design & Daughters LLC doing business as Data Design Dimension by Kathryn Hurchla.

Owner
Data Design Dimension
Impact. Visualize. Grow. Full lifecycle data studio to optimize, build flows, and gain traction while you go.
Data Design Dimension
Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts

Data-FX Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts Currently, there are only 2 chart option

Landon Ferguson 20 Nov 21, 2022
Eulera Dashboard is an easy and intuitive way to get a quick feel of what’s happening on the world’s market.

an easy and intuitive way to get a quick feel of what’s happening on the world’s market ! Eulera dashboard is a tool allows you to monitor historical

Salah Eddine LABIAD 4 Nov 25, 2022
coordinate to draw the nimbus logo on the graffitiwall

This is a community effort to draw the nimbus logo on beaconcha.in's graffitiwall. get started clone repo with git clone https://github.com/tennisbowl

4 Apr 04, 2022
Typical: Fast, simple, & correct data-validation using Python 3 typing.

typical: Python's Typing Toolkit Introduction Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types

Sean 171 Jan 02, 2023
Sci palettes for matplotlib/seaborn

sci palettes for matplotlib/seaborn Installation python3 -m pip install sci-palettes Usage import seaborn as sns import matplotlib.pyplot as plt impor

Qingdong Su 2 Jun 07, 2022
Scientific Visualization: Python + Matplotlib

An open access book on scientific visualization using python and matplotlib

Nicolas P. Rougier 8.6k Dec 31, 2022
This project is an Algorithm Visualizer where a user can visualize algorithms like Bubble Sort, Merge Sort, Quick Sort, Selection Sort, Linear Search and Binary Search.

Algo_Visualizer This project is an Algorithm Visualizer where a user can visualize common algorithms like "Bubble Sort", "Merge Sort", "Quick Sort", "

Rahul 4 Feb 07, 2022
Manim is an animation engine for explanatory math videos.

A community-maintained Python framework for creating mathematical animations.

12.4k Dec 30, 2022
A script written in Python that generate output custom color (HEX or RGB input to x1b hexadecimal)

ColorShell ─ 1.5 Planned for v2: setup.sh for setup alias This script converts HEX and RGB code to x1b x1b is code for colorize outputs, works on ou

Riley 4 Oct 31, 2021
`charts.css.py` brings `charts.css` to Python. Online documentation and samples is available at the link below.

charts.css.py charts.css.py provides a python API to convert your 2-dimension data lists into html snippet, which will be rendered into charts by CSS,

Ray Luo 3 Sep 23, 2021
A Scheil-Gulliver simulation tool using pycalphad.

scheil A Scheil-Gulliver simulation tool using pycalphad. import matplotlib.pyplot as plt from pycalphad import Database, variables as v from scheil i

pycalphad 6 Dec 10, 2021
Small U-Net for vehicle detection

Small U-Net for vehicle detection Vivek Yadav, PhD Overview In this repository , we will go over using U-net for detecting vehicles in a video stream

Vivek Yadav 91 Nov 03, 2022
Flame Graphs visualize profiled code

Flame Graphs visualize profiled code

Brendan Gregg 14.1k Jan 03, 2023
DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

1 Jan 03, 2022
Getting started with Python, Dash and Plot.ly for the Data Dashboards team

data_dashboards Getting started with Python, Dash and Plot.ly for the Data Dashboards team Getting started MacOS users: # Install the pyenv version ma

Department for Levelling Up, Housing and Communities 1 Nov 08, 2021
An easy to use burndown chart generator for GitHub Project Boards.

Burndown Chart for GitHub Projects An easy to use burndown chart generator for GitHub Project Boards. Table of Contents Features Installation Assumpti

Joseph Hale 15 Dec 28, 2022
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
649 Pokémon palettes as CSVs, with a Python lib to turn names/IDs into palettes, or MatPlotLib compatible ListedColormaps.

PokePalette 649 Pokémon, broken down into CSVs of their RGB colour palettes. Complete with a Python library to convert names or Pokédex IDs into eithe

11 Dec 05, 2022
Schema validation just got Pythonic

Schema validation just got Pythonic schema is a library for validating Python data structures, such as those obtained from config-files, forms, extern

Vladimir Keleshev 2.7k Jan 06, 2023
A minimalistic wrapper around PyOpenGL to save development time

glpy glpy is pyOpenGl wrapper which lets you work with pyOpenGl easily.It is not meant to be a replacement for pyOpenGl but runs on top of pyOpenGl to

Abhinav 9 Apr 02, 2022