Video Visual Relation Detection (VidVRD) tracklets generation. also for ACM MM Visual Relation Understanding Grand Challenge

Overview

VidVRD-tracklets

This repository contains codes for Video Visual Relation Detection (VidVRD) tracklets generation based on MEGA and deepSORT. These tracklets are also suitable for ACM MM Visual Relation Understanding (VRU) Grand Challenge (which is base on the VidOR dataset).

If you are only interested in the generated tracklets, ​you can ignore these codes and download them directly from here

Download generated tracklets directly

We release the object tracklets for VidOR train/validation/test set. You can download the tracklets here, and put them in the following folder as

├── deepSORT
│   ├── ...
│   ├── tracking_results
│   │   ├── VidORtrain_freq1_m60s0.3_part01
│   │   ├── ...
│   │   ├── VidORtrain_freq1_m60s0.3_part14
│   │   ├── VidORval_freq1_m60s0.3
│   │   ├── VidORtest_freq1_m60s0.3
│   │   ├── readme.md
│   │   └── format_demo.py
│   └── ...
├── MEGA
│   ├── ... 
│   └── ...

Please refer to deepSORT/tracking_results/readme.md for more details

Evaluate the tracklets mAP

Run python deepSORT/eval_traj_mAP.py to evaluate the tracklets mAP. (you might need to change some args in deepSORT/eval_traj_mAP.py)

Generate object tracklets by yourself

The object tracklets generation pipeline mainly consists of two parts: MEGA (for video object detection), and deepSORT (for video object tracking).

Quick Start

  1. Install MEGA as the official instructions MEGA/INSTALL.md (Note that the folder path may be different when installing).

    • If you have any trouble when installing MEGA, you can try to clone the official MEGA repository and install it, and then replace the official mega.pytorch/mega_core with our modified MEGA/mega_core. Refer to MEGA/modification_details.md for the details of our modifications.
  2. Download the VidOR dataset and the pre-trained weight of MEGA. Put them in the following folder as

├── deepSORT/
│   ├── ...
├── MEGA/
│   ├── ... 
│   ├── datasets/
│   │   ├── COCOdataset/        # used for MEGA training
│   │   ├── COCOinVidOR/        # used for MEGA training
│   │   ├── vidor-dataset/
│   │   │   ├── annotation/
│   │   │   │   ├── training/
│   │   │   │   └── validation/
│   │   │   ├── img_index/ 
│   │   │   │   ├── VidORval_freq1_0024.txt
│   │   │   │   ├── ...
│   │   │   ├── val_frames/
│   │   │   │   ├── 0001_2793806282/
│   │   │   │   │   ├── 000000.JPEG
│   │   │   │   │   ├── ...
│   │   │   │   ├── ...
│   │   │   ├── val_videos/
│   │   │   │   ├── 0001/
│   │   │   │   │   ├── 2793806282.mp4
│   │   │   │   │   ├── ...
│   │   │   │   ├── ...
│   │   │   ├── train_frames/
│   │   │   ├── train_videos/
│   │   │   ├── test_frames/
│   │   │   ├── test_videos/
│   │   │   └── video2img_vidor.py
│   │   └── construct_img_idx.py
│   ├── training_dir/
│   │   ├── COCO34ORfreq32_4gpu/
│   │   │   ├── inference/
│   │   │   │   ├── VidORval_freq1_0024/
│   │   │   │   │   ├── predictions.pth
│   │   │   │   │   └── result.txt
│   │   │   │   ├── ...
│   │   │   └── model_0180000.pth
│   │   ├── ...
  1. Run python MEGA/datasets/vidor-dataset/video2img_vidor.py (note that you may need to change some args) to extract frames from videos (This causes a lot of data redundancy, but we have to do this, because MEGA takes image data as input).

  2. Run python MEGA/datasets/construct_img_idx.py (note that you may need to change some args) to generate the img_index used in MEGA inference.

    • The generated .txt files will be saved in MEGA/datasets/vidor-dataset/img_index/. You can use VidORval_freq1_0024.txt as a demo for the following commands.
  3. Run the following command to detect frame-level object proposals with bbox features (RoI pooled features).

    CUDA_VISIBLE_DEVICES=0   python  \
        MEGA/tools/test_net.py \
        --config-file MEGA/configs/MEGA/inference/VidORval_freq1_0024.yaml \
        MODEL.WEIGHT MEGA/training_dir/COCO34ORfreq32_4gpu/model_0180000.pth \
        OUTPUT_DIR MEGA/training_dir/COCO34ORfreq32_4gpu/inference
    
    • The above command will generate a predictions.pth file for this VidORval_freq1_0024 demo. We also release this predictions.pth here.

    • the config files for VidOR train set are in MEGA/configs/MEGA/partxx

    • The predictions.pth contains frame-level box positions and features (RoI features) for each object. For RoI features, they can be accessed through roifeats = boxlist.get_field("roi_feats"), if you are familiar with MEGA or maskrcnn-benchmark

  4. Run python MEGA/mega_boxfeatures/cvt_proposal_result.py (note that you may need to change some args) to convert predictions.pth to a .pkl file for the following deepSORT stage.

    • We also provide VidORval_freq1_0024.pkl here
  5. Run python deepSORT/deepSORT_tracking_v2.py (note that you may need to change some args) to perform deepSORT tracking. The results will be saved in deepSORT/tracking_results/

Train MEGA for VidOR by yourself

  1. Download MS-COCO and put them as shown in above.

  2. Run python MEGA/tools/extract_coco.py to extract annotations for COCO in VidOR, which results in COCO_train_34classes.pkl and COCO_valmini_34classes.pkl

  3. train MEGA by the following commands:

    python -m torch.distributed.launch \
        --nproc_per_node=4 \
        tools/train_net.py \
        --master_port=$((RANDOM + 10000)) \
        --config-file MEGA/configs/MEGA/vidor_R_101_C4_MEGA_1x_4gpu.yaml \
        OUTPUT_DIR MEGA/training_dir/COCO34ORfreq32_4gpu

More detailed training instructions will be updated soon...

FastAPI Admin Dashboard based on FastAPI and Tortoise ORM.

FastAPI ADMIN 中文文档 Introduction FastAPI-Admin is a admin dashboard based on fastapi and tortoise-orm. FastAPI-Admin provide crud feature out-of-the-bo

long2ice 1.6k Jan 02, 2023
A python application for manipulating pandas data frames from the comfort of your web browser

A python application for manipulating pandas data frames from the comfort of your web browser. Data flows are represented as a Directed Acyclic Graph, and nodes can be ran individually as the user se

Schlerp 161 Jan 04, 2023
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

80 Dec 13, 2022
xarray: N-D labeled arrays and datasets

xarray is an open source project and Python package that makes working with labelled multi-dimensional arrays simple, efficient, and fun!

Python for Data 2.8k Dec 29, 2022
A jazzy skin for the Django Admin-Interface (official repository).

Django Grappelli A jazzy skin for the Django admin interface. Grappelli is a grid-based alternative/extension to the Django administration interface.

Patrick Kranzlmueller 3.4k Dec 31, 2022
Extendable, adaptable rewrite of django.contrib.admin

django-admin2 One of the most useful parts of django.contrib.admin is the ability to configure various views that touch and alter data. django-admin2

Jazzband 1.2k Dec 29, 2022
Tactical RMM is a remote monitoring & management tool for Windows computers, built with Django and Vue.

Tactical RMM is a remote monitoring & management tool for Windows computers, built with Django and Vue. It uses an agent written in golan

Dan 1.4k Dec 30, 2022
Sandwich Batch Normalization

Sandwich Batch Normalization Code for Sandwich Batch Normalization. Introduction We present Sandwich Batch Normalization (SaBN), an extremely easy imp

VITA 48 Dec 15, 2022
Manuskript is an open-source tool for writers.

Manuskript is an open-source tool for writers. Manuskript runs on GNU/Linux, Mac OS X, and Windows.

Olivier 1.4k Jan 07, 2023
A user-friendly JSON editing form for Django admin

A user-friendly JSON editing form for Django admin

Bharat Chauhan 141 Dec 30, 2022
aiohttp admin is generator for admin interface based on aiohttp

aiohttp admin is generator for admin interface based on aiohttp

Mykhailo Havelia 17 Nov 16, 2022
Modern responsive template for the Django admin interface with improved functionality. We are proud to announce completely new Jet. Please check out Live Demo

Django JET Modern template for Django admin interface with improved functionality Attention! NEW JET We are proud to announce completely new Jet. Plea

Geex Arts 3.4k Dec 29, 2022
A Django admin theme using Twitter Bootstrap. It doesn't need any kind of modification on your side, just add it to the installed apps.

django-admin-bootstrapped A Django admin theme using Bootstrap. It doesn't need any kind of modification on your side, just add it to the installed ap

1.6k Dec 28, 2022
Material design for django administration

Django Material Administration Quick start pip install django-material-admin Add material.admin and material.admin.default to your INSTALLED_APPS sett

Anton 279 Jan 05, 2023
Django Smuggler is a pluggable application for Django Web Framework that helps you to import/export fixtures via the automatically-generated administration interface.

Django Smuggler Django Smuggler is a pluggable application for Django Web Framework to easily dump/load fixtures via the automatically-generated admin

semente 373 Dec 26, 2022
Python code for "Machine learning: a probabilistic perspective" (2nd edition)

Python code for "Machine learning: a probabilistic perspective" (2nd edition)

Probabilistic machine learning 5.3k Dec 31, 2022
Video Visual Relation Detection (VidVRD) tracklets generation. also for ACM MM Visual Relation Understanding Grand Challenge

VidVRD-tracklets This repository contains codes for Video Visual Relation Detection (VidVRD) tracklets generation based on MEGA and deepSORT. These tr

25 Dec 21, 2022
A new style for Django admin

Djamin Djamin a new and clean styles for Django admin based in Google projects styles. Quick start Install djamin: pip install -e git://github.com/her

Herson Leite 236 Dec 15, 2022
Simple and extensible administrative interface framework for Flask

Flask-Admin The project was recently moved into its own organization. Please update your references to Flask-Admin 5.2k Dec 29, 2022

:honey_pot: A fake Django admin login screen page.

django-admin-honeypot django-admin-honeypot is a fake Django admin login screen to log and notify admins of attempted unauthorized access. This app wa

Derek Payton 907 Dec 31, 2022