Learning to Draw: Emergent Communication through Sketching

Overview

Learning to Draw: Emergent Communication through Sketching

This is the official code for the paper "Learning to Draw: Emergent Communication through Sketching".

ArXivPapers With CodeGetting StartedGame setupsModel setupDatasets

About

We demonstrate that it is possible for a communication channel based on line drawing to emerge between agents playing a visual referential communication game. Furthermore we show that with a simple additional self-supervised loss that the drawings the agent produces are interpretable by humans.

Getting started

You'll need to install the required dependencies listed in requirements.txt. This includes installing the differentiable rasteriser from the DifferentiableSketching repository, and the source version of https://github.com/pytorchbearer/torchbearer:

pip install git+https://github.com/jonhare/DifferentiableSketching.git
pip install git+https://github.com/pytorchbearer/torchbearer.git
pip install -r requirements.txt

Once the dependencies are installed, you can run the commgame.py script to train and test models:

python commgame.py train [args]
python commgame.py test [args]

For example, to train a pair of agents on the original game using the STL10 dataset (which will be downloaded if required), you would run:

python commgame.py train --dataset STL10 --output stl10-original-model --sigma2 5e-4 --nlines 20 --learning-rate 0.0001 --imagenet-weights --freeze-vgg --imagenet-norm --epochs 250 --invert --batch-size 100

The options --sigma2 and --nlines control the thickness and number of lines respectively. --imagenet-weights uses the standard pretrained imagenet vgg16 weights (use --sin-weights for stylized imagenet weights). Finally, --freeze-vgg freezes the backbone CNN, --imagenet-norm specifies to apply the imagenet normalisation to images (this should be used when using either imagenet or stylized imagenet weights), and --invert draws black strokes on a white canvas.

The training scripts compute a running communication rate in addition to loss and this is displayed as training progresses. After each epoch a validation pass is performed and images of the sketches and sender inputs and receiver targets are saved to the output directory along with a model snapshot. The output directory also contains a log file with the training and validation statistics per epoch.

Example commands to run the experiments in the paper are given in commands.md

Further details on commandline arguments are given below.

Game setups

All the setups involve a referential game where the reciever tries to select the "correct" image from a pool on the basis of a "sketch" provided by the sender. The primary measure of success is the communication rate. The different command line arguments to control the different game variants are listed in the following subsections:

Havrylov and Titov's Original Game Setup

Sender sees one image; Reciever sees many, where one is exactly the same as sender.

Number of reciever images (target + distractors) is controlled by the batch-size. Number of sender images per iteration can also be controlled for completeness, but defaults to the same as batch size (e.g. each forward pass with a batch plays all possible game combinations using each of the images as a target).

arguments:
--batch-size
[--sender-images-per-iter]

Object-oriented Game Setup (same)

Sender sees one image; Reciever sees many, where one is exactly the same as sender and the others are all of different classes.

arguments:
--object-oriented same
[--num-targets]
[--sender-images-per-iter]

Object-oriented Game Setup (different)

Sender sees one image; Reciever sees many, each of different classes; one of the images is the same class as the sender, but is a completely different image).

arguments:
--object-oriented different 
[--num-targets]
[--sender-images-per-iter]
[--random-transform-sender]

Model setup

Sender

The "sender" consists of a backbone VGG16 CNN which translates the input image into a latent vector and a "decoder" with an MLP that projects the latent representation from the backbone to a set of drawing commands that are differentiably rendered into an image which is sent to the "reciever".

The backbone can optionally be initialised with pretrained weight and also optionally frozen (except for the final linear projection). The backbone, including linear projection can be shared between sender and reciever (default) or separate (--separate_encoders).

arguments:
[--freeze-vgg]
[--imagenet-weights --imagenet-norm] 
[--sin-weights --imagenet-norm] 
[--separate_encoders]

Receiver

The "receiver" consists of a backbone CNN which is used to convert visual inputs (both the images in the pool and the sketch) into a latent vector which is then transformed into a different latent representation by an MLP. These projected latent vectors are used for prediction and in the loss as described below.

The actual backbone CNN model architecture will be the same as the sender's. The backbone can optionally share parameters with the "sender" agent. Alternatively it can be initialised with pre-trained weights, and also optionally frozen.

arguments:
[--freeze-vgg]
[--imagenet-weights --imagenet-norm]
[--separate_encoders]

Datasets

  • MNIST
  • CIFAR-10 / CIFAR-100
  • TinyImageNet
  • CelebA (--image-size to control size; default 64px)
  • STL-10
  • Caltech101 (training data is balanced by supersampling with augmentation)

Datasets will be downloaded to the dataset root directory (default ./data) as required.

arguments: 
--dataset {CIFAR10,CelebA,MNIST,STL10,TinyImageNet,Caltech101}  
[--dataset-root]

Citation

If you find this repository useful for your research, please cite our paper using the following.

  @@inproceedings{
  mihai2021learning,
  title={Learning to Draw: Emergent Communication through Sketching},
  author={Daniela Mihai and Jonathon Hare},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021},
  url={https://openreview.net/forum?id=YIyYkoJX2eA}
  }
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022