Learning to Draw: Emergent Communication through Sketching

Overview

Learning to Draw: Emergent Communication through Sketching

This is the official code for the paper "Learning to Draw: Emergent Communication through Sketching".

ArXivPapers With CodeGetting StartedGame setupsModel setupDatasets

About

We demonstrate that it is possible for a communication channel based on line drawing to emerge between agents playing a visual referential communication game. Furthermore we show that with a simple additional self-supervised loss that the drawings the agent produces are interpretable by humans.

Getting started

You'll need to install the required dependencies listed in requirements.txt. This includes installing the differentiable rasteriser from the DifferentiableSketching repository, and the source version of https://github.com/pytorchbearer/torchbearer:

pip install git+https://github.com/jonhare/DifferentiableSketching.git
pip install git+https://github.com/pytorchbearer/torchbearer.git
pip install -r requirements.txt

Once the dependencies are installed, you can run the commgame.py script to train and test models:

python commgame.py train [args]
python commgame.py test [args]

For example, to train a pair of agents on the original game using the STL10 dataset (which will be downloaded if required), you would run:

python commgame.py train --dataset STL10 --output stl10-original-model --sigma2 5e-4 --nlines 20 --learning-rate 0.0001 --imagenet-weights --freeze-vgg --imagenet-norm --epochs 250 --invert --batch-size 100

The options --sigma2 and --nlines control the thickness and number of lines respectively. --imagenet-weights uses the standard pretrained imagenet vgg16 weights (use --sin-weights for stylized imagenet weights). Finally, --freeze-vgg freezes the backbone CNN, --imagenet-norm specifies to apply the imagenet normalisation to images (this should be used when using either imagenet or stylized imagenet weights), and --invert draws black strokes on a white canvas.

The training scripts compute a running communication rate in addition to loss and this is displayed as training progresses. After each epoch a validation pass is performed and images of the sketches and sender inputs and receiver targets are saved to the output directory along with a model snapshot. The output directory also contains a log file with the training and validation statistics per epoch.

Example commands to run the experiments in the paper are given in commands.md

Further details on commandline arguments are given below.

Game setups

All the setups involve a referential game where the reciever tries to select the "correct" image from a pool on the basis of a "sketch" provided by the sender. The primary measure of success is the communication rate. The different command line arguments to control the different game variants are listed in the following subsections:

Havrylov and Titov's Original Game Setup

Sender sees one image; Reciever sees many, where one is exactly the same as sender.

Number of reciever images (target + distractors) is controlled by the batch-size. Number of sender images per iteration can also be controlled for completeness, but defaults to the same as batch size (e.g. each forward pass with a batch plays all possible game combinations using each of the images as a target).

arguments:
--batch-size
[--sender-images-per-iter]

Object-oriented Game Setup (same)

Sender sees one image; Reciever sees many, where one is exactly the same as sender and the others are all of different classes.

arguments:
--object-oriented same
[--num-targets]
[--sender-images-per-iter]

Object-oriented Game Setup (different)

Sender sees one image; Reciever sees many, each of different classes; one of the images is the same class as the sender, but is a completely different image).

arguments:
--object-oriented different 
[--num-targets]
[--sender-images-per-iter]
[--random-transform-sender]

Model setup

Sender

The "sender" consists of a backbone VGG16 CNN which translates the input image into a latent vector and a "decoder" with an MLP that projects the latent representation from the backbone to a set of drawing commands that are differentiably rendered into an image which is sent to the "reciever".

The backbone can optionally be initialised with pretrained weight and also optionally frozen (except for the final linear projection). The backbone, including linear projection can be shared between sender and reciever (default) or separate (--separate_encoders).

arguments:
[--freeze-vgg]
[--imagenet-weights --imagenet-norm] 
[--sin-weights --imagenet-norm] 
[--separate_encoders]

Receiver

The "receiver" consists of a backbone CNN which is used to convert visual inputs (both the images in the pool and the sketch) into a latent vector which is then transformed into a different latent representation by an MLP. These projected latent vectors are used for prediction and in the loss as described below.

The actual backbone CNN model architecture will be the same as the sender's. The backbone can optionally share parameters with the "sender" agent. Alternatively it can be initialised with pre-trained weights, and also optionally frozen.

arguments:
[--freeze-vgg]
[--imagenet-weights --imagenet-norm]
[--separate_encoders]

Datasets

  • MNIST
  • CIFAR-10 / CIFAR-100
  • TinyImageNet
  • CelebA (--image-size to control size; default 64px)
  • STL-10
  • Caltech101 (training data is balanced by supersampling with augmentation)

Datasets will be downloaded to the dataset root directory (default ./data) as required.

arguments: 
--dataset {CIFAR10,CelebA,MNIST,STL10,TinyImageNet,Caltech101}  
[--dataset-root]

Citation

If you find this repository useful for your research, please cite our paper using the following.

  @@inproceedings{
  mihai2021learning,
  title={Learning to Draw: Emergent Communication through Sketching},
  author={Daniela Mihai and Jonathon Hare},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021},
  url={https://openreview.net/forum?id=YIyYkoJX2eA}
  }
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022