Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

Overview

🚀 If it helps you, click a star!

Update log

  • 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-uploaded code
  • 2021.04.09 Re-upload the code, "V1 Commit"
  • 2021.04.22 update torch distributed training
  • Ongoing update .....

1. Display (Cityscapes)

  • Using model DDRNet 1525 test sets, official MIOU =78.4069%
Average results
Class results1
Class results2
Class results3
  • Comparison of the original and predicted images
origin
label
predict

2. Install

pip install -r requirements.txt
Experimental environment:

  • Ubuntu 16.04 Nvidia-Cards >= 1
  • python==3.6.5
  • See Dependency Installation Package for details in requirement.txt

3. Model

All the modeling is done in builders/model_builder.py

  • FCN
  • FCN_ResNet
  • SegNet
  • UNet
  • BiSeNet
  • BiSeNetV2
  • PSPNet
  • DeepLabv3_plus
  • HRNet
  • DDRNet
Model Backbone Val mIoU Test mIoU Imagenet Pretrain Pretrained Model
PSPNet ResNet 50 76.54% - PSPNet
DeeplabV3+ ResNet 50 77.78% - DeeplabV3+
DDRNet23_slim - DDRNet23_slim_imagenet
DDRNet23 - DDRNet23_imagenet
DDRNet39 - 79.63% - DDRNet39_imagenet DDRNet39
Updating more model.......

4. Data preprocessing

This project enables you to expose data sets: CityscapesISPRS
The data set is uploaded later .....
Cityscapes data set preparation is shown here:

4.1 Download the dataset

Download the dataset from the link on the website, You can get *leftImg8bit.png suffix of original image under folder leftImg8bit, a) *color.pngb) *labelIds.pngc) *instanceIds.png suffix of fine labeled image under folder gtFine.

*leftImg8bit.png          : the origin picture
a) *color.png             : the class is encoded by its color
b) *labelIds.png          : the class is encoded by its ID
c) *instanceIds.png       : the class and the instance are encoded by an instance ID

4.2 Onehot encoding of label image

The real label gray scale image Onehot encoding used by the semantic segmentation task is 0-18, so the label needs to be encoded. Using scripts dataset/cityscapes/cityscapes_scripts/process_cityscapes.py to process the image and get the result *labelTrainIds.png. process_cityscapes.py usage: Modify 486 lines `Cityscapes_path'is the path to store your own data.

  • Comparison of original image, color label image and gray label image (0-18)
***_leftImg8bit
***_gtFine_color
***_gtFine_labelTrainIds
  • Local storage path display /data/open_data/cityscapes/:
data
  |--open_data
        |--cityscapes
               |--leftImg8bit
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******
               |--gtFine
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******

4.3 Generate image path

  • Generate a txt containing the image path
    Use script dataset/generate_txt.py to generate the path txt file containing the original image and labels. A total of 3 txt files will be generated: cityscapes_train_list.txtcityscapes_val_list.txtcityscapes_test_list.txt, and copy the three files to the dataset root directory.
data
  |--open_data
        |--cityscapes
               |--cityscapes_train_list.txt
               |--cityscapes_val_list.txt
               |--cityscapes_test_list.txt
               |--leftImg8bit
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******
               |--gtFine
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******
  • The contents of the txt are shown as follows:
leftImg8bit/train/cologne/cologne_000000_000019_leftImg8bit.png gtFine/train/cologne/cologne_000000_000019_gtFine_labelTrainIds.png
leftImg8bit/train/cologne/cologne_000001_000019_leftImg8bit.png gtFine/train/cologne/cologne_000001_000019_gtFine_labelTrainIds.png
..............
  • The format of the txt are shown as follows:
origin image path + the separator '\t' + label path +  the separator '\n'

TODO.....

5. How to train

sh train.sh

5.1 Parameters

python -m torch.distributed.launch --nproc_per_node=2 \
                train.py --model PSPNet_res50 --out_stride 8 \
                --max_epochs 200 --val_epochs 20 --batch_size 4 --lr 0.01 --optim sgd --loss ProbOhemCrossEntropy2d \
                --base_size 768 --crop_size 768  --tile_hw_size 768,768 \
                --root '/data/open_data' --dataset cityscapes --gpus_id 1,2

6. How to validate

sh predict.sh
Comments
  • size doesn't match error when run the train.py

    size doesn't match error when run the train.py

    sorry to disturb you, when i run train.py, it goes wrong, and i print the size of the two tensor, there are same, i can't find the resolution, how to solve it? `******* Begining traing *******


    Epoch 0/300: 0%| | 0/909 [00:00<?, ?it/s]/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/functional.py:1350: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead. warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.") Traceback (most recent call last): File "/home/yeluyue/dl/bottle_Segmentation/train.py", line 415, in train_model(args) File "/home/yeluyue/dl/bottle_Segmentation/train.py", line 293, in train_model lossTr, lr = train(args, trainLoader, model, criteria, optimizer, epoch) File "/home/yeluyue/dl/bottle_Segmentation/train.py", line 117, in train loss = criterion(output, labels) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call result = self.forward(*input, **kwargs) File "/home/yeluyue/dl/bottle_Segmentation/tools/loss.py", line 27, in forward return self.loss(outputs, targets) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call result = self.forward(*input, **kwargs) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/modules/loss.py", line 498, in forward return F.binary_cross_entropy(input, target, weight=self.weight, reduction=self.reduction) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/functional.py", line 2047, in binary_cross_entropy new_size = _infer_size(target.size(), weight.size()) RuntimeError: The size of tensor a (512) must match the size of tensor b (2) at non-singleton dimension 2`

    opened by lj107024 4
  • AttributeError in HRNet

    AttributeError in HRNet

    When I run ./model/HRNet.py on Ubuntu 18.04, torch 1.8.0+cu111, the error raise as follows,

    /home/vgc/users/lwz/code/rice_seg/template/Segmentation-Pytorch/model/HRNet.py:329: DeprecationWarning: np.int is a deprecated alias for the builtin int. To silence this warning, use int by itself. Doing this will not modify any behavior and is safe. When replacing np.int, you may wish to use e.g. np.int64 or np.int32 to specify the precision. If you wish to review your current use, check the release note link for additional information. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations last_inp_channels = np.int(np.sum(pre_stage_channels)) Traceback (most recent call last): File "/home/vgc/users/lwz/code/rice_seg/template/Segmentation-Pytorch/model/HRNet.py", line 520, in summary(model, (3, 512, 512), device="cpu") File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torchsummary/torchsummary.py", line 72, in summary model(*x) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/vgc/users/lwz/code/rice_seg/template/Segmentation-Pytorch/model/HRNet.py", line 447, in forward y_list = self.stage2(x_list) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward input = module(input) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 893, in _call_impl hook_result = hook(self, input, result) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torchsummary/torchsummary.py", line 19, in hook summary[m_key]["input_shape"] = list(input[0].size()) AttributeError: 'list' object has no attribute 'size'

    opened by rrryan2016 2
  • bug about generate_txt.py

    bug about generate_txt.py

    in line 26 filename_gt = filename.replace('leftImg8bit', 'gtFine') should change to filename_gt = filename.replace('leftImg8bit', 'gtFine').replace('.png','_labelTrainIds.png') to produce the format of leftImg8bit/train/cologne/cologne_000001_000019_leftImg8bit.png gtFine/train/cologne/cologne_000001_000019_gtFine_labelTrainIds.png

    the result will be leftImg8bit/train/cologne/cologne_000001_000019_leftImg8bit.png gtFine/train/cologne/cologne_000001_000019_gtFine.png before. And the program wont find the file.

    if I am wrong, plz tell me. Best wishes.

    opened by songzijiang 2
  • 使用ENet模型,在train时正常,在pridict时会出现超出内存。

    使用ENet模型,在train时正常,在pridict时会出现超出内存。

    在train时正常,在pridict时会出现: RuntimeError.CUDA out of memory. Tried to allocate 188.00 MiB (GPU 0; 6.00 GiB total capacity; 4.21 GiB already allocated; 63.85 MiB free; 81.86 MiB cached) 使用predict_sliding时会出现: 发生异常: TypeError init() got an unexpected keyword argument 'std' 请问怎么解决?

    opened by FelixJiao 2
  • Bump opencv-python from 4.1.0.25 to 4.2.0.32

    Bump opencv-python from 4.1.0.25 to 4.2.0.32

    Bumps opencv-python from 4.1.0.25 to 4.2.0.32.

    Release notes

    Sourced from opencv-python's releases.

    4.2.0.32

    OpenCV version 4.2.0.

    Changes:

    • macOS environment updated from xcode8.3 to xcode 9.4
    • macOS uses now Qt 5 instead of Qt 4
    • Nasm version updated to Docker containers
    • multibuild updated

    Fixes:

    • don't use deprecated brew tap-pin, instead refer to the full package name when installing #267
    • replace get_config_var() with get_config_vars() in setup.py #274
    • add workaround for DLL errors in Windows Server #264

    4.1.2.30

    OpenCV version 4.1.2.

    Changes:

    • Python 3.8 builds added to the build matrix
    • Support for Python 3.4 builds dropped (Python 3.4 is in EOL)
    • multibuild updated
    • minor build logic changes
    • Docker images rebuilt

    Notes:

    Please note that Python 2.7 enters into EOL phase in January 2020. opencv-python Python 2.7 wheels won't be provided after that.

    4.1.1.26

    OpenCV version 4.1.1.

    Changes:

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump opencv-python from 4.1.0.25 to 4.1.1.26

    Bump opencv-python from 4.1.0.25 to 4.1.1.26

    Bumps opencv-python from 4.1.0.25 to 4.1.1.26.

    Release notes

    Sourced from opencv-python's releases.

    4.1.1.26

    OpenCV version 4.1.1.

    Changes:

    • FFmpeg has been compiled with https support on Linux builds #229
    • CI build logic related changes #197, #227, #228
    • Custom libjepg-turbo removed because it's provided by OpenCV #231
    • 64-bit Qt builds are now smaller #236
    • Custom builds should be now rather easy to do locally #235:
      1. Clone this repository
      2. Optional: set up ENABLE_CONTRIB and ENABLE_HEADLESS environment variables to 1 if needed
      3. Optional: add additional Cmake arguments to CMAKE_ARGS environment variable
      4. Run python setup.py bdist_wheel
    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump numpy from 1.15.1 to 1.22.0

    Bump numpy from 1.15.1 to 1.22.0

    Bumps numpy from 1.15.1 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v1.0.0)
Owner
Deeachain
Graduate students from outer space
Deeachain
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022