COCO Style Dataset Generator GUI

Overview

COCO-Style-Dataset-Generator-GUI

This is a simple GUI-based Widget based on matplotlib in Python to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes using a simple interactive User Interface. Annotation can be in terms of polygon points covering all parts of an object (see instructions in README) or it can simply be a bounding box, for which you click and drag the mouse button. Optionally, one could choose to use a pretrained Mask RCNN model to come up with initial segmentations. This shifts the work load from painstakingly annotating all the objects in every image to altering wrong predictions made by the system which maybe simpler once an efficient model is learnt.

Note: This repo only contains code to annotate every object using a single polygon figure. Support for multi-polygon objects and iscrowd=True annotations isn't available yet. Feel free to extend the repo as you wish. Also, the code uses xyxy bounding boxes while coco uses xywh; something to keep in mind if you intend to create a custom COCO dataset to plug into other models as COCO datasets.

REQUIREMENTS:

Python 3.5+ is required to run the Mask RCNN code. If only the GUI tool is used, Python2.7 or Python3.5+ can be used.

NOTE: For python2.7, OpenCV needs to be installed from source and configured to be in the environment running the code.
Before installing, please upgrade setuptools using: pip install --upgrade setuptools
For Windows users, please install Visual Studio C++ 14 or higher if necessary using this link: http://go.microsoft.com/fwlink/?LinkId=691126&fixForIE=.exe.

RUN THE SEGMENTOR GUI:

Clone the repo.

git clone https://github.com/hanskrupakar/COCO-Style-Dataset-Generator-GUI.git

Installing Dependencies:

Before running the code, install required pre-requisite python packages using pip.

If you wish to use Mask RCNN to prelabel based on a trained model, please use the environment variable MASK_RCNN="y", otherwise there's no need to include it and you could just perform the install.

Without Mask RCNN
cd COCO-Style-Dataset-Generator-GUI/
python setup.py install
With Mask RCNN
cd COCO-Style-Dataset-Generator-GUI/
MASK_RCNN="y" python3 setup.py install

Running the instance segmentation GUI without Mask RCNN pretrained predictions:

In a separate text file, list the target labels/classes line-by-line to be displayed along with the dataset for class labels. For example, look at classes/products.txt

python3 -m coco_dataset_generator.gui.segment -i background/ -c classes/products.txt

python3 -m coco_dataset_generator.gui.segment_bbox_only -i background/ -c classes/products.txt

Running the instance segmentation GUI augmented by initial Mask RCNN pretrained model predictions:

To run the particular model for the demo, download the pretrained weights from HERE!!!. Download and extract pretrained weights into the repository.

python3 -m coco_dataset_generator.gui.segment -i background/ -c classes/products.txt \
                                              -w 
   
     [--config 
    
     ]

python3 -m coco_dataset_generator.gui.segment_bbox_only -i background/ -c classes/products.txt \
                                              -w 
     
       [--config 
      
       ]

      
     
    
   

The configuration file for Mask RCNN becomes relevant when you play around with the configuration parameters that make up the network. In order to seamlessly use the repository with multiple such Mask RCNN models for different types of datasets, you could create a single config file for every project and use them as you please. The base repository has been configured to work well with the demo model provided and so any change to the parameters should be followed by generation of its corresponding config file.

HINT: Use get_json_config.py inside Mask RCNN to get config file wrt specific parameters of Mask RCNN. You could either clone Mask_RCNN, use pip install -e Mask_RCNN/ to replace the mask_rcnn installed from this repo and then get access to get_json_config.py easily or you could find where pip installs mask_rcnn and find it directly from the source.

USAGE: segment.py [-h] -i IMAGE_DIR -c CLASS_FILE [-w WEIGHTS_PATH] [-x CONFIG_PATH]

USAGE: segment_bbox_only.py [-h] -i IMAGE_FILE -c CLASSES_FILE [-j JSON_FILE] [--save_csv] [-w WEIGHTS_PATH] [-x CONFIG_PATH]

Optional Arguments
Shorthand Flag Name Description
-h --help Show this help message and exit
-i IMAGE_DIR --image_dir IMAGE_DIR Path to the image dir
-c CLASS_FILE --class_file CLASS_FILE Path to object labels
-w WEIGHTS_PATH --weights_path WEIGHTS_PATH Path to Mask RCNN checkpoint save file
-j JSON_FILE --json_file JSON_FILE Path of JSON file to append dataset to
--save_csv Choose option to save dataset as CSV file
-x CONFIG_FILE --config_file CONFIG_FILE Path of JSON file for training config; Use get_json_config script from Mask RCNN

POLYGON SEGMENTATION GUI CONTROLS:

deepmagic

In this demo, all the green patches over the objects are the rough masks generated by a pretrained Mask RCNN network.

Key-bindings/ Buttons

EDIT MODE (when a is pressed and polygon is being edited)

  'a'       toggle vertex markers on and off.
            When vertex markers are on, you can move them, delete them

  'd'       delete the vertex under point

  'i'       insert a vertex at point near the boundary of the polygon.

Left click  Use on any point on the polygon boundary and move around
            by dragging to alter shape of polygon

REGULAR MODE

Scroll Up       Zoom into image

Scroll Down     Zoom out of image

Left Click      Create a point for a polygon mask around an object

Right Click     Complete the polygon currently formed by connecting all selected points

Left Click Drag Create a bounding box rectangle from point 1 to point 2 (works only
                when there are no polygon points on screen for particular object)

  'a'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to select it for editing

  'r'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to completely remove it

BRING PREVIOUS ANNOTATIONS  Bring back the annotations from the previous image to preserve
                            similar annotations.

SUBMIT                      To be clicked after Right click completes polygon! Finalizes current
                            segmentation mask and class label picked.
                            After this, the polygon cannot be edited.

NEXT                        Save all annotations created for current file and move on to next image.

PREV                        Goto previous image to re-annotate it. This deletes the annotations
                            created for the file before the current one in order to
                            rewrite the fresh annotations.

RESET                       If when drawing the polygon using points, the polygon doesn't cover the
                            object properly, reset will let you start fresh with the current polygon.
                            This deletes all the points on the image.

The green annotation boxes from the network can be edited by pressing on the Keyboard key a when the mouse pointer is on top of a particular such mask. Once you press a, the points making up that polygon will show up and you can then edit it using the key bindings specified. Once you're done editing the polygon, press a again to finalize the edits. At this point, it will become possible to submit that particular annotation and move on to the next one.

Once the GUI tool has been used successfully and relevant txt files have been created for all annotated images, one can use create_json_file.py to create the COCO-Style JSON file.

python -m coco_dataset_generator.utils.create_json_file -i background/ -c classes/products.txt
                                        -o output.json -t jpg
USAGE: create_json_file.py [-h] -i IMAGE_DIR -o FILE_PATH -c CLASS_FILE -t TYPE
Optional Arguments
Shorthand Flag Name Description
-i IMAGE_DIR --image_dir IMAGE_DIR Path to the image dir
-o FILE_PATH --file_path FILE_PATH Path of output file
-c CLASS_FILE --class_file CLASS_FILE Path of file with output classes
-t TYPE --type TYPE Type of the image files (jpg, png etc.)

RECTANGULAR BOUNDING BOX GUI CONTROLS:

The same GUI is designed slightly differently in case of rectangular bounding box annotations with speed of annotation in mind. Thus, most keys are keyboard bindings. Most ideally, this interface is very suited to serve to track objects across video by dragging around a box of similar size. Since the save button saves multiple frame results together, the JSON file is directly created instead of txt files for each image, which means there wouldn't be a need to use create_json_file.py.

Key-bindings/ Buttons

EDIT MODE (when a is pressed and rectangle is being edited)

  'a'       toggle vertex markers on and off.  When vertex markers are on,
            you can move them, delete them

  'i'       insert rectangle in the list of final objects to save.

Left click  Use on any point on the rectangle boundary and move around by
            dragging to alter shape of rectangle

REGULAR MODE

Scroll Up       Zoom into image

Scroll Down     Zoom out of image

Left Click Drag Create a bounding box rectangle from point 1 to point 2.

  'a'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to select it for editing

  'r'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to completely remove it

  'n'           Press key to move on to next image after completing all
                rectangles in current image

  SAVE          Save all annotated objects so far

LIST OF FUNCTIONALITIES:

    FILE                            FUNCTIONALITY

cut_objects.py                  Cuts objects based on bounding box annotations using dataset.json
                                file and creates occlusion-based augmented images dataset.

create_json_file.py             Takes a directory of annotated images (use segment.py to annotate
                                into text files) and returns a COCO-style JSON file.

extract_frames.py               Takes a directory of videos and extracts all the frames of all
                                videos into a folder labeled adequately by the video name.

pascal_to_coco.py               Takes a PASCAL-style dataset directory with JPEGImages/ and
                                Annotations/ folders and uses the bounding box as masks to
                                create a COCO-style JSON file.

segment.py                      Read the instructions above.

segment_bbox_only.py            Same functionality but optimized for easier annotation of
                                bbox-only datasets.

test_*.py                       Unit tests.

visualize_dataset.py            Visualize the annotations created using the tool.

visualize_json_file.py          Visualize the dataset JSON file annotations on the entire dataset.

compute_dataset_statistics.py   Find distribution of objects in the dataset by counts.

combine_json_files.py           Combine different JSON files together into a single dataset file.

delete_images.py                Delete necessary images from the JSON dataset.

NOTE: Please use python .py -h for details on how to use each of the above files.

Owner
Hans Krupakar
Data Science | Computer Vision
Hans Krupakar
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022