Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

Overview

AutoAugment - Learning Augmentation Policies from Data

Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by AutoAugment, described in this Google AI Blogpost.

Update July 13th, 2018: Wrote a Blogpost about AutoAugment and Double Transfer Learning.

Tested with Python 3.6. Needs pillow>=5.0.0

Examples of the best ImageNet Policy


Example

from autoaugment import ImageNetPolicy
image = PIL.Image.open(path)
policy = ImageNetPolicy()
transformed = policy(image)

To see examples of all operations and magnitudes applied to images, take a look at AutoAugment_Exploration.ipynb.

Example as a PyTorch Transform - ImageNet

from autoaugment import ImageNetPolicy
data = ImageFolder(rootdir, transform=transforms.Compose(
                        [transforms.RandomResizedCrop(224), 
                         transforms.RandomHorizontalFlip(), ImageNetPolicy(), 
                         transforms.ToTensor(), transforms.Normalize(...)]))
loader = DataLoader(data, ...)

Example as a PyTorch Transform - CIFAR10

from autoaugment import CIFAR10Policy
data = ImageFolder(rootdir, transform=transforms.Compose(
                        [transforms.RandomCrop(32, padding=4, fill=128), # fill parameter needs torchvision installed from source
                         transforms.RandomHorizontalFlip(), CIFAR10Policy(), 
			 transforms.ToTensor(), 
                         Cutout(n_holes=1, length=16), # (https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py)
                         transforms.Normalize(...)]))
loader = DataLoader(data, ...)

Example as a PyTorch Transform - SVHN

from autoaugment import SVHNPolicy
data = ImageFolder(rootdir, transform=transforms.Compose(
                        [SVHNPolicy(), 
			 transforms.ToTensor(), 
                         Cutout(n_holes=1, length=20), # (https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py)
                         transforms.Normalize(...)]))
loader = DataLoader(data, ...)

Results with AutoAugment

Generalizable Data Augmentations

Finally, we show that policies found on one task can generalize well across different models and datasets. For example, the policy found on ImageNet leads to significant improvements on a variety of FGVC datasets. Even on datasets for which fine-tuning weights pre-trained on ImageNet does not help significantly [26], e.g. Stanford Cars [27] and FGVC Aircraft [28], training with the ImageNet policy reduces test set error by 1.16% and 1.76%, respectively. This result suggests that transferring data augmentation policies offers an alternative method for transfer learning.

CIFAR 10

CIFAR10 Results

CIFAR 100

CIFAR10 Results

ImageNet

ImageNet Results

SVHN

SVHN Results

Fine Grained Visual Classification Datasets

SVHN Results

Owner
Philip Popien
Deep Learning Engineer focused on Computer Vision applications. Effective Altruist.
Philip Popien
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub

516 Dec 28, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022