ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

Related tags

Deep Learningtent
Overview

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization

This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Minimization by Dequan Wang*, Evan Shelhamer*, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell (ICLR 2021, spotlight).

⛺️ Tent equips a model to adapt itself to new and different data during testing ☀️ 🌧 ❄️ . Tented models adapt online and batch-by-batch to reduce error on dataset shifts like corruptions, simulation-to-real discrepancies, and other differences between training and testing data. This kind of adaptation is effective and efficient: tent makes just one update per batch to not interrupt inference.

We provide example code in PyTorch to illustrate the tent method and fully test-time adaptation setting.

Please check back soon for reference code to exactly reproduce the ImageNet-C results in the paper.

Installation:

pip install -r requirements.txt

tent depends on

and the example depends on

  • RobustBench v0.1 for the dataset and pre-trained model
  • yacs for experiment configuration

but feel free to try your own data and model too!

Usage:

import tent

model = TODO_model()

model = tent.configure_model(model)
params, param_names = tent.collect_params(model)
optimizer = TODO_optimizer(params, lr=1e-3)
tented_model = tent.Tent(model, optimizer)

outputs = tented_model(inputs)  # now it infers and adapts!

Example: Adapting to Image Corruptions on CIFAR-10-C

The example adapts a CIFAR-10 classifier to image corruptions on CIFAR-10-C. The purpose of the example is explanation, not reproduction: exact details of the model architecture, optimization settings, etc. may differ from the paper. That said, the results should be representative, so do give it a try and experiment!

This example compares a baseline without adaptation (source), test-time normalization for updating feature statistics during testing (norm), and our method for entropy minimization during testing (tent). The dataset is CIFAR-10-C, with 15 types and 5 levels of corruption. The model is WRN-28-10, which is the default model for RobustBench.

Usage:

python cifar10c.py --cfg cfgs/source.yaml
python cifar10c.py --cfg cfgs/norm.yaml
python cifar10c.py --cfg cfgs/tent.yaml

Result: tent reduces the error (%) across corruption types at the most severe level of corruption (level 5).

mean gauss_noise shot_noise impulse_noise defocus_blur glass_blur motion_blur zoom_blur snow frost fog brightness contrast elastic_trans pixelate jpeg
source code config 43.5 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3
norm code config 20.4 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3
tent code config 18.6 24.8 23.5 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2

See the full results for this example in the wandb report.

Correspondence

Please contact Dequan Wang and Evan Shelhamer at dqwang AT cs.berkeley.edu and shelhamer AT google.com.

Citation

If the tent method or fully test-time adaptation setting are helpful in your research, please consider citing our paper:

@inproceedings{wang2021tent,
  title={Tent: Fully Test-Time Adaptation by Entropy Minimization},
  author={Wang, Dequan and Shelhamer, Evan and Liu, Shaoteng and Olshausen, Bruno and Darrell, Trevor},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=uXl3bZLkr3c}
}
Owner
Dequan Wang
CS Ph.D. Student at UC Berkeley
Dequan Wang
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
RGB-stacking 🛑 🟩 🔷 for robotic manipulation

RGB-stacking 🛑 🟩 🔷 for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023