Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Overview

Price-Prediction-For-a-Dream-Home

ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL

  1. Import all the dependencies of the project
  2. Read dataset and observe features of the dataset carefully.
  3. The dataset has over eighty independent variables of dataype float, integer or object. My approach to handle so many features in a model is to plot a correlation matrix for variables and segregate the numerical variables with a stronger positive or negation correlation with the target variable. To visualise the magnitude of correlation a heatmap can also be plot. Correlation Plot
  4. The next step is feature engineering. This include removing null values and outliers from the dataset. The null values or NA values in dataset are observed carefully. Later, a normality curve is plot to observe the skewed behaviour of feature to choose right quantity for adjusting empty cells in dataset. Also, some of the variables have almost more than seventy percent instances as null values. Those features are dropped from the dataframe.
  5. Similary, The object datatype variables are append through the value count. That is the category with highest mode is used to substitue null values.
  6. Next step involve combining the two dataframes that is one that contain numerical variables and other that contain categorical variables together. The final dataframe is further proccessed by creating dummy variables to give as input train dataset.
  7. Now, the dataset is split using the train_test_split method of scikit learn.
  8. Train dataset is fed into the model for training by importing the Linear Regression model of scikit learn.
  9. The model is trained successfully!
  10. The sale price is predicted and displayed against true price for comparision. The predicted price values are very close to the actual values. OUTPUT DATAFRMAE
  11. NEXT, step involve model evaluation. In machine learning trained models are evaluated through cost functions. The most popular cost functions used tor evaluating linear regression based machine learning models is to use RMSE, MSE or MAE methods. Smaller the magnitude of cost function lesser is the residual of model or better is the model.
  12. Also, in machine learning a weight is associated to each feature. That very coefficient magnitude is calculated either using gradient descent or normal equation method. The magnitude of the coefficients for all the features is calculated.
  13. Finally, the evaluated model is stored in pickle.

--------------------X---------------------X--------------------X--------------------X--------------------X-------------------

Owner
DIKSHA DESWAL
CO-ODD-DING IS FUN!
DIKSHA DESWAL
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022