Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
A webhook API for Discord.

Webhook API A webhook API for Discord. Requirements requests Usage

1 Feb 08, 2022
A youtube search telegram bot.

YouTube-Search-Bot A youtube search telegram bot. Made with Python3 (C) @FayasNoushad Copyright permission under MIT License License - https://github

Fayas Noushad 22 Nov 12, 2022
Aws-cidr-finder - A Python CLI tool for finding unused CIDR blocks in AWS VPCs

aws-cidr-finder Overview An Example Installation Configuration Contributing Over

Cooper Walbrun 18 Jul 31, 2022
An attendance bot that joins google meet automatically according to schedule and marks present in the google meet.

Google-meet-self-attendance-bot An attendance bot which joins google meet automatically according to schedule and marks present in the google meet. I

Sarvesh Wadi 12 Sep 20, 2022
Riverside Rocks Python API

APIv2 Riverside Rocks Python API Routes GET / Get status of the API GET /api/v1/tor Get Tor metrics of RR family GET /api/v1/metrics Get bandwidth

3 Dec 20, 2021
IACR Events Scraper

IACR Events Scraper This scrapes https://iacr.org/events/ and exports it as a calendar file. I host a version of this for myself under https://arrrr.c

Karolin Varner 6 May 28, 2022
This repository are used to give class about AWS

AWSTraining This repository are used to give class about AWS by Marco Antonio Pereira Linkedin: https://www.linkedin.com/in/marcoap To see the types o

Marco Antonio Pereira 6 Nov 23, 2022
Elkeid HUB - A rule/event processing engine maintained by the Elkeid Team that supports streaming/offline data processing

Elkeid HUB - A rule/event processing engine maintained by the Elkeid Team that supports streaming/offline data processing

Bytedance Inc. 61 Dec 29, 2022
A multipurpose Telegram Bot written in Python for mirroring files on the Internet to Google Drive

Mirror Leech Bot Mirror Leech Bot is a multipurpose Telegram Bot written in Python for mirroring files on the Internet to our beloved Google Drive. Ba

1 Jan 01, 2022
An Open Source ALL-In-One Telegram RoBot, that can do lot of things.

URL Uploader Bot An Open Source ALL-In-One Telegram RoBot, that can do lot of things. My Features Installation The Easy Way You can also tap the Deplo

NT BOTS 1 Oct 23, 2021
Retrieves GitHub Stats via `git_api` and flask.

GitHub User Search Created using Python3 and git_api, coded by JBYT27. About This is a project I decided to make for Kajam, but I decided to choose a

an aspirin 4 May 11, 2022
Asynchronous Python API Wrapper for phisherman.gg

Asynchronous Python API Wrapper for phisherman.gg

Qrista Labs 4 Apr 30, 2022
Deleting someone else's Instagram account, repeat until the target account is blocked.

Program Features 📌 Instagram report V4. 📌 Coded with the latest version of Python. 📌 Has automatic scheduling. 📌 Full account report. 📌 Report a

hack4lx 16 Oct 25, 2022
discord.js nuker (50 bans a sec)

js-nuker discord.js nuker (50 bans a sec) I was to lazy to make the scraper in js, but this works too. DISCLAIMER This is tool was made for educationa

4 Sep 11, 2021
This is a simple bot that can be used to upload images to a third-party cloud (image hosting). Currently, only the imgbb.com website supports the bot. I Will do future updates

TGImageHosting This is a simple bot that can be used to upload images to a third party cloud (image hosting). Currently, only the imgbb.com website su

Abhijith N T 0 Dec 26, 2021
Bender: A Markov Babbler Slack Bot

See the Digital Ocean tutorial for instructions on how to get the basic bot structure in place. Once you have that, set the gunicorn command to run as

Andrew Howard 1 Dec 04, 2021
Super Fast Telegram UserBot Made With Python.

Description Super Fast Telegram UserBot Made With Python. LOGO Made With Support of All Userbots Dev's Dark-Venom is a Light-Weight Userbot. It's unde

2 Sep 14, 2021
SongFinder Bot helps you to find song name by recognising via voice note or instagram reels shared link.

SongFinder V1.1 SongFinder to detect songs name by just sending voice note or instagram reels links to your telegram bot. FFMPEG must be installed on

Abhishek Pathak 4 Dec 30, 2022
Video-Player - Telegram Music/ Video Streaming Bot Using Pytgcalls

Video Player 🔥 ᴢᴀɪᴅ ᴠᴄ ᴘʟᴀyᴇʀ ɪꜱ ᴀ ᴛᴇʟᴇɢʀᴀᴍ ᴘʀᴏᴊᴇᴄᴛ ʙᴀꜱᴇᴅ ᴏɴ ᴘʏʀᴏɢʀᴀᴍ ꜰᴏʀ ᴘʟᴀʏ

Zaid 16 Nov 30, 2022
Repository for the IPvSeeYou talk at Black Hat 2021

IPvSeeYou Geolocation Lookup Tool Overview IPvSeeYou.py is a tool to assist with geolocating EUI-64 IPv6 hosts. It takes as input an EUI-64-derived MA

57 Nov 08, 2022