Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
A Python interface module to the SAS System. It works with Linux, Windows, and mainframe SAS. It supports the sas_kernel project (a Jupyter Notebook kernel for SAS) or can be used on its own.

A Python interface to MVA SAS Overview This module creates a bridge between Python and SAS 9.4. This module enables a Python developer, familiar with

SAS Software 319 Dec 19, 2022
OpenZeppelin Contracts written in Cairo for StarkNet, a decentralized ZK Rollup

OpenZeppelin Cairo Contracts A library for secure smart contract development written in Cairo for StarkNet, a decentralized ZK Rollup. ⚠️ WARNING! ⚠️

OpenZeppelin 592 Jan 04, 2023
It's a discord.py simulator.

DiscordPySimulator It's a discord.py simulator. ⚠️ Things to fix Context As you may know, discord py commands provide the context as the first paramet

Juan Sebastián 11 Oct 24, 2022
A Discord bot that enables using breakout rooms on a server

Discord Breakout Room Bot This bot enables you to use breakout rooms on your Discord server! Note This bot was thrown together within a few hours, so

Till Müller 2 Nov 23, 2021
Maestral is an open-source Dropbox client written in Python.

Maestral - A light-weight and open-source Dropbox client for macOS and Linux

2.6k Jan 03, 2023
Python API for Photoshop.

Python API for Photoshop. The example above was created with Photoshop Python API.

Hal 372 Jan 02, 2023
Low-level, feature rich and easy to use discord python wrapper

PWRCord Low-level, feature rich and easy to use discord python wrapper Important Note: At this point, this library API is considered unstable and can

MIguel Lopes 1 Dec 26, 2021
Subtitle Translater

Subtitle Translater

OshadhaVimukthi 2 Nov 29, 2021
Discord bot developed by Delhi University Student Community!

DUSC-Bot Discord bot developed by Delhi University Student Community! Libraries Used Pycord - Documentation Features Can purge messages in bulk Drop-D

professor 1 Jan 29, 2022
This app is providing you to track some online products' prices via GMAIL.

Price Tracking App variables and descriptions of that code is in Turkish language. but we're working on translate them into English. This app is provi

Abdullah Aslan 1 Dec 11, 2021
⚡ Simple mass dm selfbot for Discord written in python3.

Zapp Simple mass dm selfbot for Discord written in python3. Warning. This project was made for educational purposes only! I take no responsibility for

Ѵιcнч 34 Nov 01, 2022
Information about the weather in a city written using Python

Information about the weather in a city Enter the desired city Climate information of the target city This program is written using Python programming

Amir Hussein Sharifnezhad 4 Nov 17, 2021
Social Framework

Social Int Framework Social Int Framework its a Selenium script that scrape the IG photos and do a Reverse search on google and yandex for finding ano

29 Dec 06, 2022
Python Paxful API wrapper.

PyPaxful Python Paxful API wrapper. Description Just a Paxful exchange API implementation in python. Final objective is to have just one python packag

1 Dec 19, 2021
🥀 Find the start of the token !

Discord Token Finder Find half of your target's token with just their ID. Install 🔧 pip install -r requeriments.txt Gui Usage 💻 Go to Discord Setti

zeytroxxx 2 Dec 22, 2021
A AntiChannelBan Telegram Group Bot Open Source

AntiChannelBan This is a Anti Channel Ban Robots delete and ban message sent by channels Deployment Method Heroku 𝚂𝚄𝙿𝙿𝙾𝚁𝚃 CREDIT BrayDen Blaze

✗ BᵣₐyDₑₙ ✗ 14 May 02, 2022
A simple way to create a request to the coinpayment API with a valid HMAC using your private key and command

Coinpayments Verify TXID Created for Astral Discord bot A simple way to create a request to the coinpayment API with a valid HMAC using your private k

HellSec 1 Nov 07, 2022
A drop-in vanilla discord.py cog to add slash command support with little to no code modifications

discord.py /slash cog A drop-in vanilla discord.py cog that acts as a translation layer to add slash command support with little to no code modificati

marshall 3 Jun 01, 2022
Hack WhatsApp Account Easily(Android)

X-Whatsapp Hack WhatsApp Account Easily(Android) HOW TO RUN 👇 (Termux) pkg update && pkg upgrade pkg install python pkg install git git clone https:/

KiLL3R_xRO 72 Dec 21, 2022