(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Overview

Wasserstein Distances for Stereo Disparity Estimation

Accepted in NeurIPS 2020 as Spotlight. [Project Page]

Wasserstein Distances for Stereo Disparity Estimation

by Divyansh Garg, Yan Wang, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger and Wei-Lun Chao

Figure

Citation

@inproceedings{div2020wstereo,
  title={Wasserstein Distances for Stereo Disparity Estimation},
  author={Garg, Divyansh and Wang, Yan and Hariharan, Bharath and Campbell, Mark and Weinberger, Kilian and Chao, Wei-Lun},
  booktitle={NeurIPS},
  year={2020}
}

Introduction

Existing approaches to depth or disparity estimation output a distribution over a set of pre-defined discrete values. This leads to inaccurate results when the true depth or disparity does not match any of these values. The fact that this distribution is usually learned indirectly through a regression loss causes further problems in ambiguous regions around object boundaries. We address these issues using a new neural network architecture that is capable of outputting arbitrary depth values, and a new loss function that is derived from the Wasserstein distance between the true and the predicted distributions. We validate our approach on a variety of tasks, including stereo disparity and depth estimation, and the downstream 3D object detection. Our approach drastically reduces the error in ambiguous regions, especially around object boundaries that greatly affect the localization of objects in 3D, achieving the state-of-the-art in 3D object detection for autonomous driving.

Contents

Our Wasserstein loss modification W_loss can be easily plugged in existing stereo depth models to improve the training and obtain better results.

We release the code for CDN-PSMNet and CDN-SDN models.

Requirements

  1. Python 3.7
  2. Pytorch 1.2.0+
  3. CUDA
  4. pip install -r ./requirements.txt
  5. SceneFlow
  6. KITTI

Pretrained Models

TO BE ADDED.

Datasets

You have to download the SceneFlow and KITTI datasets. The structures of the datasets are shown in below.

SceneFlow Dataset Structure

SceneFlow
    | monkaa
        | frames_cleanpass
        | disparity
    | driving
        | frames_cleanpass
        | disparity
    | flyingthings3d
        | frames_cleanpass 
        | disparity

KITTI Object Detection Dataset Structure

KITTI
    | training
        | calib
        | image_2
        | image_3
        | velodyne
    | testing
        | calib
        | image_2
        | image_3

Generate soft-links of SceneFlow Datasets. The results will be saved in ./sceneflow folder. Please change to fakepath path-to-SceneFlow to the SceneFlow dataset location before running the script.

python sceneflow.py --path path-to-SceneFlow --force

Convert the KITTI velodyne ground truths to depth maps. Please change to fakepath path-to-KITTI to the SceneFlow dataset location before running the script.

python ./src/preprocess/generate_depth_map.py --data_path path-to-KITTI/ --split_file ./split/trainval.txt

Optionally download KITTI2015 datasets for evaluating stereo disparity models.

Training and Inference

We have provided all pretrained models Pretrained Models. If you only want to generate the predictions, you can directly go to step 3.

The default setting requires four gpus to train. You can use smaller batch sizes which are btrain and bval, if you don't have enough gpus.

We provide code for both stereo disparity and stereo depth models.

1 Train CDN-SDN from Scratch on SceneFlow Dataset

python ./src/main_depth.py -c src/configs/sceneflow_w1.config

The checkpoints are saved in ./results/stack_sceneflow_w1/.

Follow same procedure to train stereo disparity model, but use src/main_disp.py and change to a disparity config.

2 Train CDN-SDN on KITTI Dataset

python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --pretrain ./results/sceneflow_w1/checkpoint.pth.tar --dataset  path-to-KITTI/training/

Before running, please change the fakepath path-to-KITTI/ to the correct one. --pretrain is the path to the pretrained model on SceneFlow. The training results are saved in ./results/kitti_w1_train.

If you are working on evaluating CDN on KITTI testing set, you might want to train CDN on training+validation sets. The training results will be saved in ./results/sdn_kitti_trainval.

python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --pretrain ./results/sceneflow_w1/checkpoint.pth.tar \
    --dataset  path-to-KITTI/training/ --split_train ./split/trainval.txt \
    --save_path ./results/sdn_kitti_trainval

The disparity models can also be trained on KITTI2015 datasets using src/kitti2015_w1_disp.config.

3 Generate Predictions

Please change the fakepath path-to-KITTI. Moreover, if you use the our provided checkpoint, please modify the value of --resume to the checkpoint location.

  • a. Using the model trained on KITTI training set, and generating predictions on training + validation sets.
python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --resume ./results/sdn_kitti_train/checkpoint.pth.tar --datapath  path-to-KITTI/training/ \
    --data_list ./split/trainval.txt --generate_depth_map --data_tag trainval

The results will be saved in ./results/sdn_kitti_train/depth_maps_trainval/.

  • b. Using the model trained on KITTI training + validation set, and generating predictions on testing sets. You will use them when you want to submit your results to the leaderboard.

The results will be saved in ./results/sdn_kitti_trainval_set/depth_maps_trainval/.

# testing sets
python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --resume ./results/sdn_kitti_trainval/checkpoint.pth.tar --datapath  path-to-KITTI/testing/ \
    --data_list=./split/test.txt --generate_depth_map --data_tag test

The results will be saved in ./results/sdn_kitti_trainval/depth_maps_test/.

4 Train 3D Detection with Pseudo-LiDAR

For training 3D object detection models, follow step 4 and after in the Pseudo-LiDAR_V2 repo https://github.com/mileyan/Pseudo_Lidar_V2.

Results

Results on the Stereo Disparity

Figure

3D Object Detection Results on KITTI leader board

Figure

Questions

Please feel free to email us if you have any questions.

Divyansh Garg [email protected] Yan Wang [email protected] Wei-Lun Chao [email protected]

Owner
Divyansh Garg
Making robots intelligent
Divyansh Garg
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022