PyTorch source code for Distilling Knowledge by Mimicking Features

Overview

LSHFM.detection

This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection with mimicking features. For image classification, please visit LSHFM.classification.

dependence

  • python
  • pytorch 1.7.1
  • torchvision 0.8.2

Prepare the dataset

Please prepare the COCO and VOC datasets by youself. Then you need to fix the get_data_path function in src/dataset/coco_utils.py and src/dataset/voc_utils.py.

Run

You can run the experiments by

PORT=4444 bash experiments/[script name].sh 0,1,2,3 

the training set contains VOC2007 trainval and VOC2012 trainval, while the testing set is VOC2007 test.

We train all models by 24 epochs while the learning rate decays at the 18th and 22th epoch.

Faster R-CNN

Before you run the KD experiments, please make sure the teacher model weight have been saved in pretrained. You can first run ResNet101 baseline and VGG16 baseline to train the teacher model, and then move the model to pretrained and edit --teacher-ckpt in the training shell scripts. You can also download voc0712_fasterrcnn_r101_83.6 and voc0712_fasterrcnn_vgg16fpn_79.0 directly, and move them to pretrained.

[email protected] [email protected]
Teacher 83.6 79.0
Student 82.0 75.1
L2 83.0 76.8
LSH 82.6 76.7
LSHL2 83.0 77.2

RetinaNet

As mentioned in Faster R-CNN, please make sure there are teacher models in pretrained. You can download the teacher models in voc0712_retinanet_r101_83.0.ckpt and voc0712_retinanet_vgg16fpn_76.6.ckpt.

[email protected] [email protected]
Teacher 83.0 76.6
Student 82.5 73.2
L2 82.6 74.8
LSHL2 83.0 75.2

We find that it is easy to get NaN loss when training by LSH KD.

visualize

visualize the ground truth label

python src/visual.py --dataset voc07 --idx 1 --gt

visualize the model prediction

python src/visual.py --dataset voc07 --idx 2 --model fasterrcnn_resnet50_fpn --checkpoint results/voc0712/fasterrcnn_resnet50_fpn/2020-12-11_20\:14\:09/model_13.pth

Citing this repository

If you find this code useful in your research, please consider citing us:

@article{LSHFM,
  title={Distilling knowledge by mimicking features},
  author={Wang, Guo-Hua and Ge, Yifan and Wu, Jianxin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
}

Acknowledgement

This project is based on https://github.com/pytorch/vision/tree/master/references/detection. This project aims at object detection, so I remove the code about segmentation and keypoint detection.

Owner
Guo-Hua Wang
Guo-Hua Wang
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022