ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

Overview

The ImageNet-CoG Benchmark

Project Website Paper (arXiv)

Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalization in Visual Representation Learning" (ICCV 2021). It contains code for reproducing all the experiments reported in the paper, as well as instructions on how to evaluate any custom model on the ImageNet-CoG Benchmark.

@InProceedings{sariyildiz2021conceptgeneralization,
    title={Concept Generalization in Visual Representation Learning},
    author={Sariyildiz, Mert Bulent and Kalantidis, Yannis and Larlus, Diane and Alahari, Karteek},
    booktitle={International Conference on Computer Vision},
    year={2021}
}

Contents of the Readme file:

Prerequisites: Benchmark data and code

Installation

We developed the benchmark using:

  • GCC 7.5.0
  • Python 3.7.9
  • PyTorch 1.7.1
  • Torchvision 0.8.2
  • CUDA 10.2.89
  • Optuna 2.3.0
  • YACS 0.1.8
  • termcolor 1.1.0

We recommend creating a separate conda environment for the benchmark:

conda create -n cog python=3.7.9
conda activate cog
conda install -c pytorch pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2
conda install -c conda-forge optuna=2.3
conda install termcolor
pip install yacs

Note: To reproduce the results for SimCLR-v2 and BYOL, you will also need TensorFlow, as well as the repos that contain code for converting the SimCLR-v2 and BYOL pre-trained models into PyTorch. More info can be found in the corresponding scripts under prepare_models/.

Data

To evaluate a model on the ImageNet-CoG benchmark you will need the following data:

The full ImageNet dataset (IN-21K)

The levels of ImageNet-CoG consist of a selection of 5K synsets in the full ImageNet. To download the full ImageNet, you need to create an account on the ImageNet website. Then, under the "Download" section, you will find the "Winter 2021" release (a tar file of size 1.1TB). Once you download it, extract it to folder <imagenet_images_root> (you will need this path later when extracting features). After extracting you should see the following folder structure, i.e., a separate folder of images per synset:

<imagenet_images_root>
...
|--- n07696728
|   |--- *.JPEG
|--- n11944954
|   |--- *.JPEG
...

The ILSVRC-2012 dataset (IN-1K)

To evaluate models on the pretraining dataset, you will need the ubiquitous ILSVRC-2012 subset of ImageNet, which we also refer to as IN-1K. It is also available on the ImageNet website. You will download two tar files for training (138GB) and validation (6.3GB) images, and extract them under <in1k_images_root> (again, you will need this path later). We expect the following folder structure for IN-1K:

<in1k_images_root>
...
|--- train
|   |--- n11939491
|       |--- *.JPEG
|   |--- n07836838
|       |--- *.JPEG
|--- val
|   |--- n11939491
|       |--- *.JPEG
|   |--- n07836838
|       |--- *.JPEG
...

The CoG level files

These are files that contain the concepts and data splits for ImageNet-CoG, and can be directly downloaded from the links below:

(Note: If clicking on the file names does not open a pop-up window for download, try 1) entering the file URLs directly on the address bar of your browser, or 2) using wget by giving the file URLs as arguments.)

Evaluating a model on the ImageNet-CoG benchmark

After installing the required packages and downloading the ImageNet data, you can follow the steps below:

  1. CoG step-1: Prepare the model you want to evaluate.
  2. CoG step-2: Extract image features for IN-1K and the CoG levels using the frozen backbone of the model.
  3. CoG step-3: Train linear classifiers on the pre-extracted features and measure accuracy.

CoG step-1: Model preparation

The ImageNet-CoG benchmark is designed to evaluate models that are pre-trained on IN-1K (the ILSVRC-2012 dataset).

Models evaluated in the paper

To reproduce the results for any of the models evaluated in our paper you can follow the instructions for downloading the their checkpoints. You will end up with all the checkpoints under the folder <models_root_dir>. Note that every model has a unique name that should be passed with the --model argument in all the scripts below. You can find the model names we used for all the models evaluated in our paper in this table.

Custom models

Follow these three steps to prepare your model for evaluation on the CoG benchmark.

  1. Give a name to your model: Every model has a unique name that is passed with the --model=<model_name> argument in all the scripts below. The model name consists of two parts <model_name>="<model_title>_<architecture_name>". You need to give such a name to your model, e.g., <myModel_myArchitecture>.

  2. Write a model loader function: To be able to extract features from your custom model, the load_pretrained_backbone() function must be able to load your pretrained model correctly. To do so, you will need to add a custom model loader function in model_loaders.py, that takes as input an arguments dict init_args and returns the backbone module and its forward function, e.g., backbone, forward = load_my_model(init_args)

  3. Register your model: Add a new element in MODEL_LOADER_DICT in the model_loader_dict.py script specifying the name and loader function for your model, e.g.:

[...]
"myModel_myArchitecture": load_my_model,
[...]

CoG step-2: Feature extraction

In this step, you will extract image features for the 6 datasets (IN-1K and our CoG levels L1, L2, L3, L4, L5). We provide for you a bash script to automatize feature extraction ./bash-scripts/extract_features.sh for a given model. As you notice, there are variables in this script that you need to set properly; Moreover, this script calls extract_features.py with the provided arguments for each of 6 datasets. In our GPU cluster, each feature extraction experiment takes ~60min using a V100 GPU and 8 CPU cores.

Please see below for the documentation of the arguments and several examples for extract_features.py.

(Click to see the details) Documentation of the arguments for extract_features.py:
  • Model arguments:

    • --model=<model_name>: The name of the model using which you would like to extract features. It can be one of the models we report in the paper (see the table with model names for those) or your custom model. This argument will point the code to the proper checkpoint loader function for your model.
    • For loading checkpoint files you have two options (it is enough to set one of them):
      • --models_root_dir=<models_root_dir>: If set, the script will look for a model checkpoint at path <models_root_dir>/<model_title>/<architecture_name>/model.ckpt,
      • --ckpt_file=<ckpt_file>: The full path of any valid checkpoint of the model <model_name>.
  • Dataset and split arguments: You can specify the dataset and split by using the following arguments:

    • --dataset=<dataset>: The dataset to extract features from ("in1k", "cog_l1", "cog_l2", "cog_l3", "cog_l4", "cog_l5")
    • --split=<split>: The split ("train" or "test"). Note that for the IN-1K dataset, "test" will extract features from the official validation set.
  • Arguments for the dataset (IN-1K and IN-21K) folders, and the CoG level files:

    • --in1k_images_root=<in1k_images_root>: The full path to the folder you downloaded IN-1K. This argument is required only when extracting features from IN-1K.
    • For the CoG levels (required only when extracting features from any of the CoG levels):
      • --imagenet_images_root=<imagenet_images_root>: The full path to the folder with IN-21K.
      • --cog_levels_mapping_file=cog_levels_mapping_file.pkl: The full path to the CoG concept-to-level mapping file that you can download from the section above.
      • --cog_concepts_split_file=cog_concepts_split_file.pkl: The full path to the CoG concepts split file that you can download from the section above.
  • Arguments for an output folder for features: For specifying where to save features you have two options (it is enough to set one of them):

    • --models_root_dir=<models_root_dir>: If set, features will be saved to the path <models_root_dir>/<model_title>/<architecture_name>/<dataset>/features_<split>/X_Y.pth.
    • --output_dir=<output_dir>: The full path to the folder where features will be stored (i.e., <output_dir>/X_Y.pth)
(Click to see the details) Examples for running extract_features.py:

To extract features for the training set of IN-1K from the "ResNet-50" model (which is the supervised baseline we use in the paper), run this command:

python extract_features.py \
    --model="sup_resnet50" \
    --dataset="in1k" \
    --split="train" \
    --models_root_dir=<models_root_dir> \
    --in1k_images_root=<in1k_images_root>

Note that --models_root_dir is set. Therefore, this command will load the pretrained weights of "ResNet50" from <models_root_dir>/sup/resnet50/model.ckpt and save the features into the file <models_root_dir>/sup/resnet50/in1k/features_train/X_Y.pth.

To extract the features for the test set of L5 from the "SwAV" model, run this command:

python extract_features.py \
    --model="swav_resnet50" \
    --dataset="cog_l5" \
    --split="test" \
    --models_root_dir=<models_root_dir> \
    --imagenet_images_root=<imagenet_images_root> \
    --cog_levels_mapping_file=cog_levels_mapping_file.pkl \
    --cog_concepts_split_file=cog_concepts_split_file.pkl

This script will load the pretrained weights of "SwAV" from <models_root_dir>/swav/resnet50/model.ckpt and save the features into the file <models_root_dir>/swav/resnet50/cog_l5/features_test/X_Y.pth

Also don't forget to check the bash script ./bash-scripts/extract_features.sh.

CoG step-3: Learning linear classifiers and testing

After extracting features for the 6 datasets (for their both training and test sets), we train linear classifiers on them. We divide the classification experiments into two settings:

  1. Learning with all available images: Training classifiers with all available training data for the concepts. (This setting is to reproduce the scores we report in Section 4.2.1 - Generalization to unseen concepts of our paper.) We train 5 classifiers with different seeds on each CoG level and IN-1K separately, then report their average score. So, for this setting, you will need to train 30 (6 datasets, 5 seeds) logistic regression classifiers using all available training data for the concepts. We provide for you a bash script ./bash-scripts/logreg.sh to automatize running 5 classifiers on a specific dataset (or on a specific training and test set features). There are variables in this script that you need to set properly. Then, this script calls logreg.py with the provided arguments for 5 seeds. Finally, it prints the average score of these 5 experiments. In our GPU cluster, each experiment takes ~75min using a V100 GPU and 8 CPU cores.

  2. Few-shot: Training classifiers with N in {1, 2, 4, 8, 16, 32, 64 or 128} training samples per concept. (This setting is to reproduce the scores we report in Section 4.2.2 - How fast can models adapt to unseen concepts? of our paper.) We again train 5 classifiers with different seeds on each dataset separately, then report their average score. But this time, we also change the number of training samples per concept. So, for this setting, you will need to train 240 (8 x 6 x 5) logistic regression classifiers. We provide for you a bash script ./bash-scripts/fewshot.sh to automatize running 5 classifiers on a specific dataset for N in {1, 2, 4, 8, 16, 32, 64 or 128}. There are variables in this script that you need to set properly. Then this script calls logreg.py with the provided arguments for 5 seeds and each N value. Finally, it prints the average score for each N.

Note on hyper-parameter tuning. To minimize performance differences due to sub-optimal hyper-parameters, we use the Optuna hyperparameter optimization framework to tune the learning rate and weight decay hyper-parameters when training a classifier. We sample 30 learning rate and weight decay pairs and perform hyper-parameter tuning by partitioning the training set into two temporary subsets used for hyper-parameter training and validation. Once the optimal hyper-parameters are found, then we train the final classifier with these hyper-parameters on the complete training set and report the accuracy on the test set. We combine hyper-parameter tuning, classifier training and testing in a single script; one just needs to run the logreg.py script.

Please see below for the documentation of the arguments and several examples for logreg.py.

(Click to see the details) Documentation of the arguments for logreg.py:
  • Arguments for training and test set features: To train a classifier, you need to load training and test set features extracted for a particular dataset (i.e., "X_Y.pth" files you obtained in the feature extraction step above). You have two options for specifying from where to load pre-extracted features (it is enough to set the arguments for one option):

    • Option-1: Loading pre-extracted features for a particular dataset extracted from a particular model located under <models_root_dir>. By setting the three arguments below, the script will look for features files <models_root_dir>/<model_name>/<architecture_name>/<dataset>/features_{train and test}/X_Y.pth. Please refer to the feature extraction part above to see how to set these arguments correctly.
      • --model=<model_name>: The name of the model.
      • --dataset=<dataset>: The name of the dataset.
      • --models_root_dir=<models_root_dir>: The full path to the models directory.
    • Option-2: Loading pre-extracted features from arbitrary paths. With these two arguments set, the script will look for training and test set features files <train_set_features_dir>/X_Y.pth and <test_set_features_dir>/X_Y.pth, respectively.
      • --train_features_dir=<train_features_dir>: The full path to the folder containing training set features.
      • --test_features_dir=<test_features_dir>: The full path to the folder containing test set features.
  • Arguments for an output folder for logs: logreg.py produces output logs that can be read by the print_results.py script to print the average of the classification results obtained with multiple seeds. For specifying where to save logs you have two options (it is enough to set one of them):

    • --models_root_dir=<models_root_dir>: If set, the output logs will be saved under the folder <models_root_dir>/<model_name>/<architecture_name>/<dataset>/eval_logreg/seed-<seed>/.
    • --output_dir=<output_dir>: The full path to the output folder where logs will be saved.
  • Seed for reproducibility:

    • EVAL.SEED <seed_number>: Seed for Python's random module, NumPy and PyTorch. Its default value is 22. Note that this is not an argument but a config entry. So you need to append EVAL.SEED <seed_number> to the arguments list to overwrite the default config value (see the example below). We run all classification experiments 5 times, and report the mean and variance of these runs and strongly recommend you to do the same.
  • Number of training sample per concept (for few-shot learning):

    • CLF.N_SHOT <img_per_class>: The number of training samples per concept to use for training a few-shot classifier. Note that this is not an argument but a config entry. So you need to append CLF.N_SHOT <img_per_class> to the arguments list to overwrite the default config value (see the example below).

Averaging results over multiple seeds. The logreg.py script stores top-1 and top-5 accuracies per epoch in a Python list and saves them into a pickle file named final-*/logs.pkl under the output logs folder. For getting the final mean and variance over multiple runs, i.e., after running the logreg.py script with multiple seeds, one can run the print_results.py script by providing the output logs directory with the --logreg_root_dir argument.

(Click to see the details) Examples for running logreg.py:

To train a linear classifier (including its hyper-parameter tuning phase) on top of L5 features extracted by SwAV, run:

python logreg.py \
    --model="swav_resnet50" \
    --dataset="cog_l5" \
    --models_root_dir=<models_root_dir> \
    EVAL.SEED 55  # --> training the classifier with seed 55

This script will load pre-extracted features from <models_root_dir>/swav/resnet50/cog_l5/features_{train and test}/X_Y.pth and save output logs under <models_root_dir>/swav/resnet50/cog_l5/eval_logreg/seed-55. It will also print the final top1/top5 accuracies for this run. To print the averaged scores over 5 seeds for SwAV for L5, and assuming one used the default output paths, the command is:

python print_results.py \
    --logreg_root_dir="<models_root_dir>/swav/resnet50/cog_l5/eval_logreg"

To simulate few-shot learning scenarios, you can overwrite the config entry:

python logreg.py \
    --model="swav_resnet50" \
    --dataset="cog_l5" \
    --models_root_dir=<models_root_dir> \
    CLF.N_SHOT 8 # --> training the classifier with 8 random training samples per concept

This script will use 8 random training samples per concept to train linear classifiers and save output logs under <models_root_dir>/swav/resnet50/cog_l5/eval_logreg_N8/seed-22.

Also don't forget to check the bash scripts ./bash-scripts/logreg.sh and ./bash-scripts/fewshot.sh.

Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023