No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

Overview

No-Reference Image Quality Assessment Algorithms


No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference image. Since the evaluation algorithm learns the features of good quality images and scores input images, a training process is required.

Teaser


1. Target Research Papers

  1. BRISQUE: Mittal, Anish, Anush Krishna Moorthy, and Alan Conrad Bovik. "No-reference image quality assessment in the spatial domain." IEEE Transactions on Image Processing (TIP) 21.12 (2012): 4695-4708.

  2. NIQE: Mittal, Anish, Rajiv Soundararajan, and Alan C. Bovik. "Making a “completely blind” image quality analyzer." IEEE Signal Processing Letters (SPL) 20.3 (2012): 209-212.

  3. PIQE: Venkatanath, N., et al. "Blind image quality evaluation using perception based features." 2015 Twenty First National Conference on Communications (NCC). IEEE, 2015.

  4. RankIQA: Liu, Xialei, Joost Van De Weijer, and Andrew D. Bagdanov. "Rankiqa: Learning from rankings for no-reference image quality assessment." Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017.

  5. MetaIQA: Zhu, Hancheng, et al. "MetaIQA: Deep meta-learning for no-reference image quality assessment." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.


2. Dependencies

I used the following libraries in Windows 10.

python == 3.9.7

pillow == 8.4.0

tqdm == 4.62.3

pytorch == 1.10.1

torchvision == 0.11.2

opencv-python == 4.5.4.60

scipy == 1.7.1

pandas == 1.3.4

3. Quick Start

Download the pre-trained model checkpoint files.

  1. RankIQA: https://drive.google.com/drive/folders/1Y2WgNHL6vowvKA0ISGUefQiggvrCL5rl?usp=sharing

    default directory: ./RankIQA/Rank_live.caffemodel.pt

  2. MetaIQA: https://drive.google.com/drive/folders/1SCo56y9s0yB-TPcnVHqoc63TZ2ngSxPG?usp=sharing

    default directory: ./MetaIQA/metaiqa.pth

Windows User

  • Run demo1.bat & demo2.bat in the windows terminal.

Linux User

  • Run demo1.sh & demo2.sh in the linux terminal.

Check "options.py" as well. The demo files are tutorials.

The demo images are from KADID10K dataset: http://database.mmsp-kn.de/kadid-10k-database.html


4. Acknowledgements

Repositories

  1. BRISQUE(↓): https://github.com/spmallick/learnopencv/blob/master/ImageMetrics/Python/brisquequality.py
  2. NIQE(↓): https://github.com/guptapraful/niqe
  3. NIQE model parameters: https://github.com/csjunxu/Bovik_NIQE_SPL2013
  4. PIQE(↓): https://github.com/buyizhiyou/NRVQA
  5. RankIQA(↓): https://github.com/YunanZhu/Pytorch-TestRankIQA
  6. MetaIQA(↑): https://github.com/zhuhancheng/MetaIQA

Images

  1. KADID10K: http://database.mmsp-kn.de/kadid-10k-database.html

5. Author

Dae-Young Song

M.S. Student, Department of Electronics Engineering, Chungnam National University

Github: https://github.com/EadCat

Owner
Dae-Young Song
M.S. Student Majoring in Computer Vision, Department of Electronic Engineering
Dae-Young Song
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022