No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

Overview

No-Reference Image Quality Assessment Algorithms


No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference image. Since the evaluation algorithm learns the features of good quality images and scores input images, a training process is required.

Teaser


1. Target Research Papers

  1. BRISQUE: Mittal, Anish, Anush Krishna Moorthy, and Alan Conrad Bovik. "No-reference image quality assessment in the spatial domain." IEEE Transactions on Image Processing (TIP) 21.12 (2012): 4695-4708.

  2. NIQE: Mittal, Anish, Rajiv Soundararajan, and Alan C. Bovik. "Making a “completely blind” image quality analyzer." IEEE Signal Processing Letters (SPL) 20.3 (2012): 209-212.

  3. PIQE: Venkatanath, N., et al. "Blind image quality evaluation using perception based features." 2015 Twenty First National Conference on Communications (NCC). IEEE, 2015.

  4. RankIQA: Liu, Xialei, Joost Van De Weijer, and Andrew D. Bagdanov. "Rankiqa: Learning from rankings for no-reference image quality assessment." Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017.

  5. MetaIQA: Zhu, Hancheng, et al. "MetaIQA: Deep meta-learning for no-reference image quality assessment." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.


2. Dependencies

I used the following libraries in Windows 10.

python == 3.9.7

pillow == 8.4.0

tqdm == 4.62.3

pytorch == 1.10.1

torchvision == 0.11.2

opencv-python == 4.5.4.60

scipy == 1.7.1

pandas == 1.3.4

3. Quick Start

Download the pre-trained model checkpoint files.

  1. RankIQA: https://drive.google.com/drive/folders/1Y2WgNHL6vowvKA0ISGUefQiggvrCL5rl?usp=sharing

    default directory: ./RankIQA/Rank_live.caffemodel.pt

  2. MetaIQA: https://drive.google.com/drive/folders/1SCo56y9s0yB-TPcnVHqoc63TZ2ngSxPG?usp=sharing

    default directory: ./MetaIQA/metaiqa.pth

Windows User

  • Run demo1.bat & demo2.bat in the windows terminal.

Linux User

  • Run demo1.sh & demo2.sh in the linux terminal.

Check "options.py" as well. The demo files are tutorials.

The demo images are from KADID10K dataset: http://database.mmsp-kn.de/kadid-10k-database.html


4. Acknowledgements

Repositories

  1. BRISQUE(↓): https://github.com/spmallick/learnopencv/blob/master/ImageMetrics/Python/brisquequality.py
  2. NIQE(↓): https://github.com/guptapraful/niqe
  3. NIQE model parameters: https://github.com/csjunxu/Bovik_NIQE_SPL2013
  4. PIQE(↓): https://github.com/buyizhiyou/NRVQA
  5. RankIQA(↓): https://github.com/YunanZhu/Pytorch-TestRankIQA
  6. MetaIQA(↑): https://github.com/zhuhancheng/MetaIQA

Images

  1. KADID10K: http://database.mmsp-kn.de/kadid-10k-database.html

5. Author

Dae-Young Song

M.S. Student, Department of Electronics Engineering, Chungnam National University

Github: https://github.com/EadCat

Owner
Dae-Young Song
M.S. Student Majoring in Computer Vision, Department of Electronic Engineering
Dae-Young Song
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022