Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Overview

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

diagram

This is the official PyTorch implementation of the SeCo paper:

@article{manas2021seasonal,
  title={Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data},
  author={Ma{\~n}as, Oscar and Lacoste, Alexandre and Giro-i-Nieto, Xavier and Vazquez, David and Rodriguez, Pau},
  journal={arXiv preprint arXiv:2103.16607},
  year={2021}
}

Preparation

Install Python dependencies by running:

pip install -r requirements.txt

Data Collection

First, obtain Earth Engine authentication credentials by following the installation instructions.

Then, to collect and download a new SeCo dataset from a random set of Earth locations, run:

python datasets/seco_downloader.py \
  --save_path [folder where data will be downloaded] \
  --num_locations 200000

Unsupervised Pre-training

To do unsupervised pre-training of a ResNet-18 model on the SeCo dataset, run:

python main_pretrain.py \
  --data_dir datasets/seco_1m --data_mode seco \
  --base_encoder resnet18

Transferring to Downstream Tasks

With a pre-trained SeCo model, to train a supervised linear classifier on 10% of the BigEarthNet training set in a 4-GPU machine, run:

python main_bigearthnet.py \
  --gpus 4 --accelerator dp --batch_size 1024 \
  --data_dir datasets/bigearthnet --train_frac 0.1 \
  --backbone_type pretrain --ckpt_path checkpoints/seco_resnet18_1m.ckpt \
  --freeze_backbone --learning_rate 1e-3

To train a supervised linear classifier on EuroSAT from a pre-trained SeCo model, run:

python main_eurosat.py \
  --data_dir datasets/eurosat \
  --backbone_type pretrain --ckpt_path checkpoints/seco_resnet18_1m.ckpt

To train a supervised change detection model on OSCD from a pre-trained SeCo model, run:

python main_oscd.py \
  --data_dir datasets/oscd \
  --backbone_type pretrain --ckpt_path checkpoints/seco_resnet18_1m.ckpt

Datasets

Our collected SeCo datasets can be downloaded as following:

#images RGB preview size link md5
100K 7.3 GB download ebf2d5e03adc6e657f9a69a20ad863e0
~1M 36.3 GB download 187963d852d4d3ce6637743ec3a4bd9e

Pre-trained Models

Our pre-trained SeCo models can be downloaded as following:

dataset architecture link md5
SeCo-100K ResNet-18 download dcf336be31f6c6b0e77dcb6cc958fca8
SeCo-1M ResNet-18 download 53d5c41d0f479bdfd31d6746ad4126db
SeCo-100K ResNet-50 download 9672c303f6334ef816494c13b9d05753
SeCo-1M ResNet-50 download 7b09c54aed33c0c988b425c54f4ef948
Owner
ElementAI
ElementAI
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022