This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Overview

Predicting Patient Outcomes with Graph Representation Learning

This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning. You can watch a video of the spotlight talk at W3PHIAI (AAAI workshop) here:

Watch the video

Citation

If you use this code or the models in your research, please cite the following:

@misc{rocheteautong2021,
      title={Predicting Patient Outcomes with Graph Representation Learning}, 
      author={Emma Rocheteau and Catherine Tong and Petar Veličković and Nicholas Lane and Pietro Liò},
      year={2021},
      eprint={2101.03940},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Motivation

Recent work on predicting patient outcomes in the Intensive Care Unit (ICU) has focused heavily on the physiological time series data, largely ignoring sparse data such as diagnoses and medications. When they are included, they are usually concatenated in the late stages of a model, which may struggle to learn from rarer disease patterns. Instead, we propose a strategy to exploit diagnoses as relational information by connecting similar patients in a graph. To this end, we propose LSTM-GNN for patient outcome prediction tasks: a hybrid model combining Long Short-Term Memory networks (LSTMs) for extracting temporal features and Graph Neural Networks (GNNs) for extracting the patient neighbourhood information. We demonstrate that LSTM-GNNs outperform the LSTM-only baseline on length of stay prediction tasks on the eICU database. More generally, our results indicate that exploiting information from neighbouring patient cases using graph neural networks is a promising research direction, yielding tangible returns in supervised learning performance on Electronic Health Records.

Pre-Processing Instructions

eICU Pre-Processing

  1. To run the sql files you must have the eICU database set up: https://physionet.org/content/eicu-crd/2.0/.

  2. Follow the instructions: https://eicu-crd.mit.edu/tutorials/install_eicu_locally/ to ensure the correct connection configuration.

  3. Replace the eICU_path in paths.json to a convenient location in your computer, and do the same for eICU_preprocessing/create_all_tables.sql using find and replace for '/Users/emmarocheteau/PycharmProjects/eICU-GNN-LSTM/eICU_data/'. Leave the extra '/' at the end.

  4. In your terminal, navigate to the project directory, then type the following commands:

    psql 'dbname=eicu user=eicu options=--search_path=eicu'
    

    Inside the psql console:

    \i eICU_preprocessing/create_all_tables.sql
    

    This step might take a couple of hours.

    To quit the psql console:

    \q
    
  5. Then run the pre-processing scripts in your terminal. This will need to run overnight:

    python3 -m eICU_preprocessing.run_all_preprocessing
    

Graph Construction

To make the graphs, you can use the following scripts:

This is to make most of the graphs that we use. You can alter the arguments given to this script.

python3 -m graph_construction.create_graph --freq_adjust --penalise_non_shared --k 3 --mode k_closest

Write the diagnosis strings into eICU_data folder:

python3 -m graph_construction.get_diagnosis_strings

Get the bert embeddings:

python3 -m graph_construction.bert

Create the graph from the bert embeddings:

python3 -m graph_construction.create_bert_graph --k 3 --mode k_closest

Alternatively, you can request to download our graphs using this link: https://drive.google.com/drive/folders/1yWNLhGOTPhu6mxJRjKCgKRJCJjuToBS4?usp=sharing

Training the ML Models

Before proceeding to training the ML models, do the following.

  1. Define data_dir, graph_dir, log_path and ray_dir in paths.json to convenient locations.

  2. Run the following to unpack the processed eICU data into mmap files for easy loading during training. The mmap files will be saved in data_dir.

    python3 -m src.dataloader.convert
    

The following commands train and evaluate the models introduced in our paper.

N.B.

  • The models are structured using pytorch-lightning. Graph neural networks and neighbourhood sampling are implemented using pytorch-geometric.

  • Our models assume a default graph which is made with k=3 under a k-closest scheme. If you wish to use other graphs, refer to read_graph_edge_list in src/dataloader/pyg_reader.py to add a reference handle to version2filename for your graph.

  • The default task is In-House-Mortality Prediction (ihm), add --task los to the command to perform the Length-of-Stay Prediction (los) task instead.

  • These commands use the best set of hyperparameters; To use other hyperparameters, remove --read_best from the command and refer to src/args.py.

a. LSTM-GNN

The following runs the training and evaluation for LSTM-GNN models. --gnn_name can be set as gat, sage, or mpnn. When mpnn is used, add --ns_sizes 10 to the command.

python3 -m train_ns_lstmgnn --bilstm --ts_mask --add_flat --class_weights --gnn_name gat --add_diag --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.lstmgnn_search --bilstm --ts_mask --add_flat --class_weights  --gnn_name gat --add_diag

b. Dynamic LSTM-GNN

The following runs the training & evaluation for dynamic LSTM-GNN models. --gnn_name can be set as gcn, gat, or mpnn.

python3 -m train_dynamic --bilstm --random_g --ts_mask --add_flat --class_weights --gnn_name mpnn --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.dynamic_lstmgnn_search --bilstm --random_g --ts_mask --add_flat --class_weights --gnn_name mpnn

c. GNN

The following runs the GNN models (with neighbourhood sampling). --gnn_name can be set as gat, sage, or mpnn. When mpnn is used, add --ns_sizes 10 to the command.

python3 -m train_ns_gnn --ts_mask --add_flat --class_weights --gnn_name gat --add_diag --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.ns_gnn_search --ts_mask --add_flat --class_weights --gnn_name gat --add_diag

d. LSTM (Baselines)

The following runs the baseline bi-LSTMs. To remove diagnoses from the input vector, remove --add_diag from the command.

python3 -m train_ns_lstm --bilstm --ts_mask --add_flat --class_weights --num_workers 0 --add_diag --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.lstm_search --bilstm --ts_mask --add_flat --class_weights --num_workers 0 --add_diag
Owner
Emma Rocheteau
Computer Science PhD Student at Cambridge
Emma Rocheteau
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022