Fuzzy Overclustering (FOC)

Overview

Fuzzy Overclustering (FOC)

In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in many applications these consistent annotations can not be given due to issues like intra- and interobserver variability. We call these inconsistent label fuzzy. Our method Fuzzy Overclustering overclusters the data and can therefore handle these fuzzy labels better than Out-of-the-Box Semi-Supervised Methods.

More details are given in the accpeted full paper at https://doi.org/10.3390/s21196661 or in the preprint https://arxiv.org/abs/2012.01768

The main idea is illustrated below. The graphic and caption are taken from the original work.

main idea of paper

Illustration of fuzzy data and overclustering -- The grey dots represent unlabeled data and the colored dots labeled data from different classes. The dashed lines represent decision boundaries. For certain data, a clear separation of the different classes with one decision boundary is possible and both classes contain the same amount of data (top). For fuzzy data determining a decision boundary is difficult because of intermediate datapoints between the classes (middle). These fuzzy datapoints can often not be easily sorted into one consistent class between annotators. If you overcluster the data, you get smaller but more consistent substructures in the fuzzy data (bottom). The images illustrate possible examples for \certain data (cat & dog) and \fuzzy plankton data (trichodesmium puff and tuft). The center plankton image was considered to be trichodesmium puff or tuft by around half of the annotators each. The left and right plankton image were consistently annotated as their respective class.

Installation

We advise to use docker for the experiments. We recommend a python3 container with tesnorflow 1.14 preinstalled. Additionally the following commands need to be executed:

apt-get update
apt-get install -y libsm6 libxext6 libxrender-dev libgl1-mesa-glx

After this ensure that the requirements from requirements.txt are installed. The most important packages are keras, scipy and opencv.

Usage

The parameters are given in arguments.yaml with their description. Most of the parameters can be left at the default value. Especially the dataset, batch size and epoch related parameters are imported.

As a rule of thumb the following should be applied:

  • overcluster_k = 5-6 * the number of classes
  • batch_size = repetition * overcluster_k * 2-3

You need to define three directories for the execution with docker:

  • DATASET_ROOT, this folder contains a folder with the dataset name. This folder contains a trainand val folder. It needs a folder unlabeled if the parameter unlabeled_data is used. Each folder contains subfolder with the given classes.
  • LOG_ROOT, inside a subdiretory logs all experimental results will be stored with regard to the given IDs and a time stamp
  • SRC_ROOT root of the this project source code

The DOCKER_IMAGE is the above defined image.

You can visualize the results with tensorboard --logdir . from inside the log_dir

Example Usages

bash % test pipeline running docker run -it --rm -v :/data-ssd -v :/data1 -v :/src -w="/src" python main.py --IDs foc experiment_name not_use_mi --dataset [email protected] --unlabeled_data [email protected] --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 --normal_epoch 2 --frozen_epoch 1 % training FOC-Light docker run -it --rm -v :/data-ssd -v :/data1 -v :/home -w="/home" python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 % training FOC (no warmup) % needs multiple GPUs or very large ones (change num gpu to 1 in this case) docker run -it --rm -v :/data-ssd -v :/data1 -v :/home -w="/home" python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 390 --batch_size 390 --overcluster_k 60 --num_gpus 3 --lambda_m 1 --sample_repetition 3 ">
% test container
docker run -it --rm -v 
               
                :/data-ssd -v 
                
                 :/data1   -v 
                 
                  :/src -w="/src" 
                  
                    bash


% test pipeline running
docker run -it --rm -v 
                   
                    :/data-ssd -v 
                    
                     :/data1 -v 
                     
                      :/src -w="/src" 
                      
                        python main.py --IDs foc experiment_name not_use_mi --dataset [email protected] --unlabeled_data [email protected] --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 --normal_epoch 2 --frozen_epoch 1 % training FOC-Light docker run -it --rm -v 
                       
                        :/data-ssd -v 
                        
                         :/data1 -v 
                         
                          :/home -w="/home" 
                          
                            python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 % training FOC (no warmup) % needs multiple GPUs or very large ones (change num gpu to 1 in this case) docker run -it --rm -v 
                           
                            :/data-ssd -v 
                            
                             :/data1 -v 
                             
                              :/home -w="/home" 
                              
                                python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 390 --batch_size 390 --overcluster_k 60 --num_gpus 3 --lambda_m 1 --sample_repetition 3 
                              
                             
                            
                           
                          
                         
                        
                       
                      
                     
                    
                   
                  
                 
                
               
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022