Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Overview

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Project | PDF | Poster
Fangyu Li, N. Dinesh Reddy, Xudong Chen and Srinivasa G. Narasimhan
Proceedings of IEEE Intelligent Vehicles Symposium (IV'21)
Best Paper Award

Following instructions below, the user will get keypoints, trajectory reconstruction and vehicular activity clustering results like

Set up

The set up process can be skipped if using docker. Please check "Docker" section.

Python

Python version 3.6.9 is used. Python packages are in requirements.txt .

git clone https://github.com/Emrys-Lee/Traffic4D-Release.git
sudo apt-get install python3.6
sudo apt-get install python3-pip
cd Traffic4D-Release
pip3 install -r requirements.txt

C++

Traffic4D uses C++ libraries ceres and pybind for efficient optimization. pybind needs clang compiler, so Traffic4D uses clang compiler.

Install clang compiler

sudo apt-get install clang++-6.0

Install prerequisites for ceres

# CMake
sudo apt-get install cmake
# google-glog + gflags
sudo apt-get install libgoogle-glog-dev libgflags-dev
# BLAS & LAPACK
sudo apt-get install libatlas-base-dev
# Eigen3
sudo apt-get install libeigen3-dev
# SuiteSparse and CXSparse (optional)
sudo apt-get install libsuitesparse-dev

Download and install ceres

wget https://github.com/ceres-solver/ceres-solver/archive/1.12.0.zip
unzip 1.12.0.zip
cd ceres-solver-1.12.0/
mkdir build
cd build
cmake ..
make
sudo make install

Download and install pybind

git clone https://github.com/pybind/pybind11
cd pybind11
cmake .
make
sudo make install

Build Traffic4D optimization library

cd Traffic4D-Release/src/ceres
make

ceres_reconstruct.so and ceres_spline.so are generated under path Traffic4D-Release/src/ceres/.

Dataset

Download dataset and pre-generated results from here, and put it under Traffic4D-Release/.

cd Traffic4D-Release
mv Data-Traffic4D.zip ./
unzip Data-Traffic4D.zip

The directory should be like

Traffic4D-Release/
    Data-Traffic4D/
    └───fifth_morewood/
        └───fifth_morewood_init.vd
        └───top_view.png
        └───images/
                00001.jpg
                00002.jpg
                ...
                06288.jpg
    └───arterial_kennedy/
        └───arterial_kennedy_init.vd
        └───top_view.png
        └───images/
                <put AI City Challenge frames here>
        ...

The input and output paths can be modified in config/*.yml.

Explanation

1. Input videos

Sample videos in Traffic4D are provided. Note arterial_kennedy and dodge_century are from Nvidia AI City Challenge City-Scale Multi-Camera Vehicle Tracking Challenge Track. Please request the access to the dataset here. Once get the data, run

ffmpeg -i <mtmc-dir>/train/S01/c001/vdo.avi Traffic4D-Release/Data-Traffic4D/arterial_kennedy/images/%05d.jpg
ffmpeg -i <mtmc-dir>/test/S02/c007/vdo.avi Traffic4D-Release/Data-Traffic4D/dodge_century/images/%05d.jpg

to extract frames into images/.

2. Pre-Generated 2D results

Detected 2D bounding boxes, keypoints and tracking IDs are stored in *_init.vd. Check Occlusionnet implementation for detecting keypoints; V-IOU for multi-object tracking.

3. Output folder

Folder Traffic4D-Release/Result/ will be created by default.

Experiments

Run python exp/traffic4d.py config/<intersection_name>.yml <action>. Here YML configuration files for multiple intersections are provided under config/ folder. <action> shoulbe be reconstruction or clustering to perform longitudinal reconstruction and activity clustering sequentially. For example, below runs Fifth and Morewood intersection.

cd Traffic4D-Release
python3 exp/traffic4d.py config/fifth_morewood.yml reconstruction
python3 exp/traffic4d.py config/fifth_morewood.yml clustering

Results

Find these results in the output folder:

  1. 2D keypoints: If 3D reconstruction is done, 2D reprojected keypoints will be plotted in Traffic4D-Release/Result/<intersection_name>_keypoints/.
  2. 3D reconstructed trajectories and clusters: The clustered 3D trajectories are plotted on the top view map as Traffic4D-Release/Result/<intersection_name>_top_view.jpg.

Docker

We provide docker image with dependencies already set up. The steps in "Set up" can be skipped if you use docker image. You still need to clone the repo and download the dataset and put it in under Traffic4D-Release/.

git clone https://github.com/Emrys-Lee/Traffic4D-Release.git

Pull Traffic4D docker image.

docker pull emrysli/traffic4d-release:latest

Then create a container and map the git repo into docker container to access the dataset. For example, if the cloned repo locates at host directory /home/xxx/Traffic4D-Release, <path_to_repo> should be /home/xxx. If <path_in_container> is /home/yyy, then /home/xxx/Traffic4D-Release will be mapped as /home/yyy/Traffic4D-Release inside the container.

docker run -it -v <path_to_repo>/Traffic4D-Release:<path_in_container>/Traffic4D-Release emrysli/traffic4d-release:latest /bin/bash

Inside container compile Traffic4D again.

# inside container
cd <path_in_container>/Traffic4D-Release/src/ceres
make

Run experiments.

cd <path_in_container>/Traffic4D-Release
python3 exp/traffic4d.py config/fifth_morewood.yml reconstruction
python3 exp/traffic4d.py config/fifth_morewood.yml clustering

Trouble Shooting

  1. tkinter module is missing
File "/usr/local/lib/python3.6/dist-packages/matplotlib/backends/_backend_tk.py", line 5, in <module>
    import tkinter as Tk
ModuleNotFoundError: No module named 'tkinter'

Solution: install tkinter.

sudo apt-get install python3-tk
  1. opencv import error such as
File "/usr/local/lib/python3.6/dist-packages/cv2/__init__.py", line 3, in <module>
    from .cv2 import *
ImportError: libSM.so.6: cannot open shared object file: No such file or directory

Solution: install the missing libraries.

sudo apt-get install libsm6 libxrender1 libfontconfig1 libxext6

Citation

Traffic4D

@conference{Li-2021-127410,
author = {Fangyu Li and N. Dinesh Reddy and Xudong Chen and Srinivasa G. Narasimhan},
title = {Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision},
booktitle = {Proceedings of IEEE Intelligent Vehicles Symposium (IV '21)},
year = {2021},
month = {July},
publisher = {IEEE},
keywords = {Self-Supervision, vehicle Detection, 4D Reconstruction, 3D reconstuction, Pose Estimation.},
}

Occlusion-Net

@inproceedings{onet_cvpr19,
author = {Reddy, N. Dinesh and Vo, Minh and Narasimhan, Srinivasa G.},
title = {Occlusion-Net: 2D/3D Occluded Keypoint Localization Using Graph Networks},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {7326--7335},
year = {2019}
}
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Google Research 36 Aug 26, 2022